iterative coupling
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 3)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinzhou Zhao ◽  
Qing Yin ◽  
John McLennan ◽  
Yongming Li ◽  
Yu Peng ◽  
...  

Fluid-solid coupling in fractured reservoirs plays a critical role for optimizing and managing in energy and geophysical engineering. Computational difficulties associated with sharp fracture models motivate phase field fracture modeling. However, for geomechanical problems, the fully coupled hydromechanical modeling with the phase field framework is still under development. In this work, we propose a fluid-solid fully coupled model, in which discrete fractures are regularized by the phase field. Specifically, this model takes into account the complex coupled interaction of Darcy-Biot-type fluid flow in poroelastic media, Reynolds lubrication governing flow inside fractures, mass exchange between fractures and matrix, and the subsequent geomechanical response of the solid. An iterative coupling method is developed to solve this multifield problem efficiently. We present numerical studies that demonstrate the performance of our model.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7117
Author(s):  
Wenjie Zhang ◽  
Kangyong Liu ◽  
Shengbin Ma ◽  
Tongdan Gong ◽  
Yingbo Zhao

Based on the energy conversion equation and dynamic power model of the semi-transparent crystalline silicon photovoltaic (PV) window (ST-PVW), through an iterative coupling solution to the operating temperature of the cell, a thermal-electric coupling calculation method for the ST-PVW is provided, and, combined with experiments, the method model was verified. Based on this model, the influence of PV cell coverage rate (PVR) on the thermal performance of the ST-PVW was studied. According to the simulation results, in summer, the heat gain of the ST-PVW decreases with the increase of PVR, and in winter, the amount of heat loss increases with the increase of PVR. For the four cities of Guangzhou, Nanjing, Beijing and Harbin, when the PVR is 1, 0.60 to 0.64, 0.28 to 0.32 and 0.26 to 0.30, respectively, the annual power consumption of the air conditioner can reach the minimum, and when the PVR is 0.16 to 0.17, 0.24 to 0.25, 0.22 to 0.23 and 0.19 to 0.20, respectively, the amount of electricity generated can just offset the power consumption of the air conditioner during the day.


2021 ◽  
Vol 14 (5) ◽  
pp. 2959-2975
Author(s):  
Olivier Marti ◽  
Sébastien Nguyen ◽  
Pascale Braconnot ◽  
Sophie Valcke ◽  
Florian Lemarié ◽  
...  

Abstract. State-of-the-art Earth system models, like the ones used in the Coupled Model Intercomparison Project Phase 6 (CMIP6), suffer from temporal inconsistencies at the ocean–atmosphere interface. Indeed, the coupling algorithms generally implemented in those models do not allow for a correct phasing between the ocean and the atmosphere and hence between their diurnal cycles. A possibility to remove these temporal inconsistencies is to use an iterative coupling algorithm based on the Schwarz iterative method. Despite its large computational cost compared to standard coupling methods, which makes the algorithm implementation impractical for production runs, the Schwarz method is useful to evaluate some of the errors made in state-of-the-art ocean–atmosphere coupled models (e.g., in the representation of the processes related to diurnal cycle), as illustrated by the present study. IPSL-CM6-SW-VLR is a low-resolution version of the IPSL-CM6 coupled model with a simplified land surface model, implementing a Schwarz iterative coupling scheme. Comparisons between coupled solutions obtained with this new scheme and the standard IPSL coupling scheme (referred to as the parallel algorithm) show large differences after sunrise and before sunset, when the external forcing (insolation at the top of the atmosphere) has the fastest pace of change. At these times of the day, the difference between the two numerical solutions is often larger than 100 % of the solution, even with a small coupling period, thus suggesting that significant errors are potentially made with current coupling methods. Most of those differences can be strongly reduced by making only two iterations of the Schwarz method, which leads to a doubling of the computing cost. Besides the parallel algorithm used in IPSL-CM6, we also test a so-called sequential atmosphere-first algorithm, which is used in some coupled ocean–atmosphere models. We show that the sequential algorithm improves the numerical results compared to the parallel one at the expanse of a loss of parallelism. The present study focuses on the ocean–atmosphere interface with no sea ice. The problem with three components (ocean–sea ice–atmosphere) remains to be investigated.


2021 ◽  
Author(s):  
Thilo Schramm ◽  
Fabian Böttcher ◽  
Viktoria Pauw ◽  
Leonhard Odersky ◽  
Smajil Halilovic ◽  
...  

<p>To reduce anthropogenic climate change, our energy demand needs to be met by renewable energies, wherever possible. So far, only a minor part of heating and cooling is met by such sources. Shallow geothermal energy, powered by green electricity, can close this gap at a high level of efficiency, while reducing intermittency problems current renewables have. As there are various competing uses of the underground in urban environments, e.g. drinking water protection and infrastructure, local authorities are more and more restrictive in granting licenses for new shallow geothermal systems.</p><p>In the project Geo.KW we created a coupling approach, which combines hydrothermal and infrastructure modeling to efficiently position shallow geothermal systems between existing uses and other conflicting groundwater usage, optimized by economical and ecological constraints. This should act as a planning tool for water authorities and policymakers.</p><p>We are using PFLOTRAN, a finite volume Darcy-Richards model as our flow and heat transport model.<br>The energy infrastructure optimization is done with urbs, a linear optimization model for distributed energy systems.<br>For our iterative coupling, we are using preCICE, a multi-physics coupling library, which facilitates fully parallel peer-to-peer exchange between these modeling domains.</p><p>The city of Munich is the pilot-region for the implementation of our tool, supported by local government and water authorities. The size and complexity of the model makes it necessary to run the optimization approach on a supercomputer, i.e. the SuperMUC-NG of the Leibniz Supercomputing Centre. Even there, the model needs to be partitioned for the energy infrastructure optimization to be feasible.</p>


2021 ◽  
Author(s):  
Natascha Brandhorst ◽  
Daniel Erdal ◽  
Insa Neuweiler

Abstract. Fully integrated three dimensional (3D) physically based hydrologic models usually require many computational resources. For many applications, simplified models can be a cost effective alternative. 3D models of subsurface flow are often simplified by coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. The crucial part of such models is the coupling between the two model compartments. In this work we compare two approaches for the coupling. One is iterative and the 1D unsaturated zone models go down to the impervious bottom of the aquifer and the other one is non-iterative and uses a moving lower boundary for the unsaturated zone. In this context we also propose a new way of treating the specific yield, which plays a crucial role in linking the unsaturated and the groundwater model. Both models are applied to three test cases with increasing complexity and analyzed in terms of accuracy and speed compared to fully integrated model runs. The non-iterative approach is faster while the iterative approach is more accurate and robust. Besides, for the iterative coupling method a calibration of the specific yield is not needed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7664
Author(s):  
Michele Ferraiuolo ◽  
Michele Leo ◽  
Roberto Citarella

Large Liquid Rocket Engines for Aerospace applications usually need to be cooled regeneratively since they are characterized by high pressure levels and heat flux with the presence, in the inner structure, of very high thermal gradients—thus necessitating the adoption of elastic-plastic nonlinear material models to study the thermomechanical behavior of the chamber and its service life. Tackling such nonlinearity makes the finite element analyses computationally intensive, particularly so when dealing with three-dimensional models. In these instances, it is highly recommended to adopt optimized numerical approaches that can save computation time while maintaining high levels of accuracy. The aim of the present paper is to implement an iterative coupling technique between two finite element models, a Global linear model and a Local nonlinear one, in the framework of a Global/Local procedure, to improve the accuracy of the numerical simulations. Both conformal and non-conformal meshes at the interface between the Global and the Local models have been considered. The results show that, even with a very few iterations, significant accuracy improvements are achieved.


Sign in / Sign up

Export Citation Format

Share Document