Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

2018 ◽  
Vol 52 (3-4) ◽  
pp. 1805-1818 ◽  
Author(s):  
Jun Ying ◽  
Ping Huang ◽  
Tao Lian ◽  
Hongjian Tan
2016 ◽  
Vol 29 (10) ◽  
pp. 3867-3881 ◽  
Author(s):  
Jun Ying ◽  
Ping Huang

Abstract The role of the intermodel spread of cloud–radiation feedback in the uncertainty in the tropical Pacific SST warming (TPSW) pattern under global warming is investigated based on the historical and RCP8.5 runs from 32 models participating in CMIP5. The large intermodel discrepancies in cloud–radiation feedback contribute 24% of the intermodel uncertainty in the TPSW pattern over the central Pacific. The mechanism by which the cloud–radiation feedback influences the TPSW pattern is revealed based on an analysis of the surface heat budget. A relatively weak negative cloud–radiation feedback over the central Pacific cannot suppress the surface warming as greatly as in the multimodel ensemble and thus induces a warm SST deviation over the central Pacific, producing a low-level convergence that suppresses (enhances) the evaporative cooling and zonal cold advection in the western (eastern) Pacific. With these processes, the original positive SST deviation over the central Pacific will move westward to the western and central Pacific, with a negative SST deviation in the eastern Pacific. Compared with the observed cloud–radiation feedback from six sets of reanalysis and satellite-observed data, the negative cloud–radiation feedback in the models is underestimated in general. It implies that the TPSW pattern should be closer to an El Niño–like pattern based on the concept of observational constraint. However, the observed cloud–radiation feedback from the various datasets also demonstrates large discrepancies in magnitude. Therefore, the authors suggest that more effort should be made to improve the precision of shortwave radiation observations and the description of cloud–radiation feedback in models for a more reliable projection of the TPSW pattern in future.


2016 ◽  
Vol 29 (22) ◽  
pp. 8051-8065 ◽  
Author(s):  
Jun Ying ◽  
Ping Huang

Abstract This study investigates how intermodel differences in large-scale ocean dynamics affect the tropical Pacific sea surface temperature (SST) warming (TPSW) pattern under global warming, as projected by 32 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The largest cause of intermodel TPSW differences is related to the cloud–radiation feedback. After removing the effect of cloud–radiation feedback, the authors find that differences in ocean advection play the next largest role, explaining around 14% of the total intermodel variance in TPSW. Of particular importance are differences in climatological zonal overturning circulation among the models. With the robust enhancement of ocean stratification across models, models with relatively strong climatological upwelling tend to have relatively weak SST warming in the eastern Pacific. Meanwhile, the pronounced intermodel differences in ocean overturning changes contribute little to uncertainty in the TPSW pattern. The intermodel differences in climatological zonal overturning are found to be associated with the intermodel spread in climatological SST. In most CMIP5 models, there is a common cold tongue associated with an overly strong overturning in the climatology simulation, implying a La Niña–like bias in the TPSW pattern projected by the MME of the CMIP5 models. This provides further evidence for the projection that the TPSW pattern should be closer to an El Niño–like pattern than the MME projection.


2019 ◽  
Vol 3 (5) ◽  
pp. 400-413
Author(s):  
Yang Li ◽  
◽  
QuanLiang Chen ◽  
JianPing Li ◽  
WenJun Zhang ◽  
...  

2005 ◽  
Vol 18 (13) ◽  
pp. 2344-2360 ◽  
Author(s):  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Erich Roeckner ◽  
Gurvan Madec ◽  
Toshio Yamagata

Abstract The cold tongue in the tropical Pacific extends too far west in most current ocean–atmosphere coupled GCMs (CGCMs). This bias also exists in the relatively high-resolution SINTEX-F CGCM despite its remarkable performance of simulating ENSO variations. In terms of the importance of air–sea interactions to the climatology formation in the tropical Pacific, several sensitivity experiments with improved coupling physics have been performed in order to reduce the cold-tongue bias in CGCMs. By allowing for momentum transfer of the ocean surface current to the atmosphere [full coupled simulation (FCPL)] or merely reducing the wind stress by taking the surface current into account in the bulk formula [semicoupled simulation (semi-CPL)], the warm-pool/cold-tongue structure in the equatorial Pacific is simulated better than that of the control simulation (CTL) in which the movement of the ocean surface is ignored for wind stress calculation. The reduced surface zonal current and vertical entrainment owing to the reduced easterly wind stress tend to produce a warmer sea surface temperature (SST) in the western equatorial Pacific. Consequently, the dry bias there is much reduced. The warming tendency of the SST in the eastern Pacific, however, is largely suppressed by isopycnal diffusion and meridional advection of colder SST from south of the equator due to enhanced coastal upwelling near Peru. The ENSO signal in the western Pacific and its global teleconnection in the North Pacific are simulated more realistically. The approach as adopted in the FCPL run is able to generate a correct zonal SST slope and efficiently reduce the cold-tongue bias in the equatorial Pacific. The surface easterly wind itself in the FCPL run is weakened, reducing the easterly wind stress further. This is related with a weakened zonal Walker cell in the atmospheric boundary layer over the eastern Pacific and a new global angular momentum balance of the atmosphere associated with reduced westerly wind stress over the southern oceans.


2015 ◽  
Vol 12 (8) ◽  
pp. 6525-6587 ◽  
Author(s):  
A. Cabré ◽  
I. Marinov ◽  
R. Bernardello ◽  
D. Bianchi

Abstract. We analyze simulations of the Pacific Ocean oxygen minimum zones (OMZs) from 11 Earth System model contributions to the Coupled Model Intercomparison Project Phase 5, focusing on the mean state and climate change projections. The simulations tend to overestimate the volume of the OMZs, especially in the tropics and Southern Hemisphere. Compared to observations, five models introduce incorrect meridional asymmetries in the distribution of oxygen including larger southern OMZ and weaker northern OMZ, due to interhemispheric biases in intermediate water mass ventilation. Seven models show too deep an extent of the tropical hypoxia compared to observations, stemming from a deficient equatorial ventilation in the upper ocean combined with a too large biologically-driven downward flux of particulate organic carbon at depth, caused by too high particle export from the euphotic layer and too weak remineralization in the upper ocean. At interannual timescales, the dynamics of oxygen in the eastern tropical Pacific OMZ is dominated by biological consumption and linked to natural variability in the Walker circulation. However, under the climate change scenario RCP8.5, all simulations yield small and discrepant changes in oxygen concentration at mid depths in the tropical Pacific by the end of the 21st century due to an almost perfect compensation between warming-related decrease in oxygen saturation and decrease in biological oxygen utilization. Climate change projections are at odds with recent observations that show decreasing oxygen levels at mid depths in the tropical Pacific. Out of the OMZs, all the CMIP5 models predict a decrease of oxygen over most of the surface, deep and high latitudes ocean due to an overall slow-down of ventilation and increased temperature.


Sign in / Sign up

Export Citation Format

Share Document