Sources of Uncertainty in the Tropical Pacific Warming Pattern under Global Warming Projected by Coupled Ocean-Atmosphere Models

2020 ◽  
Author(s):  
Jun Ying
2006 ◽  
Vol 6 ◽  
pp. 103-110 ◽  
Author(s):  
W. Cabos Narvaez ◽  
F. Alvarez-Garcia ◽  
M. J. OrtizBeviá

Abstract. We compare the physical mechanisms involved in the generation and decay of ENSO events in a control (present day conditions) and Scenario (Is92a, IPCC 1996) simulations performed with the coupled ocean-atmosphere GCM ECHAM4-OPYC3. A clustering technique which objectively discriminates common features in the evolution of the Tropical Pacific Heat Content anomalies leading to the peak of ENSO events allows us to group into a few classes the ENSO events occurring in 240 years of data in the control and scenario runs. In both simulations, the composites of the groups show differences in the generation and development of ENSO. We present the changes in the statistics of the groups and explore the possible mechanisms involved.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


Author(s):  
Matthieu Lengaigne ◽  
Jean-Philippe Boulanger ◽  
Christophe Menkes ◽  
Pascale Delecluse ◽  
Julia Slingo

2009 ◽  
Vol 22 (22) ◽  
pp. 5902-5917 ◽  
Author(s):  
Y. Yu ◽  
D-Z. Sun

Abstract The coupled model of the Institute of Atmospheric Physics (IAP) is used to investigate the effects of extratropical cooling and warming on the tropical Pacific climate. The IAP coupled model is a fully coupled GCM without any flux correction. The model has been used in many aspects of climate modeling, including the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) climate change and paleoclimate simulations. In this study, the IAP coupled model is subjected to cooling or heating over the extratropical Pacific. As in an earlier study, the cooling and heating is imposed over the extratropical region poleward of 10°N–10°S. Consistent with earlier findings, an elevated (reduced) level of ENSO activity in response to an increase (decrease) in the cooling over the extratropical region is found. The changes in the time-mean structure of the equatorial upper ocean are also found to be very different between the case in which ocean–atmosphere is coupled over the equatorial region and the case in which the ocean–atmosphere over the equatorial region is decoupled. For example, in the uncoupled run, the thermocline water across the entire equatorial Pacific is cooled in response to an increase in the extratropical cooling. In the corresponding coupled run, the changes in the equatorial upper-ocean temperature in the extratropical cooling resemble a La Niña situation—a deeper thermocline in the western and central Pacific accompanied by a shallower thermocline in the eastern Pacific. Conversely, with coupling, the response of the equatorial upper ocean to extratropical cooling resembles an El Niño situation. These results ascertain the role of extratropical ocean in determining the amplitude of ENSO. The results also underscore the importance of ocean–atmosphere coupling in the interaction between the tropical Pacific and the extratropical Pacific.


2005 ◽  
Vol 18 (13) ◽  
pp. 2344-2360 ◽  
Author(s):  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Erich Roeckner ◽  
Gurvan Madec ◽  
Toshio Yamagata

Abstract The cold tongue in the tropical Pacific extends too far west in most current ocean–atmosphere coupled GCMs (CGCMs). This bias also exists in the relatively high-resolution SINTEX-F CGCM despite its remarkable performance of simulating ENSO variations. In terms of the importance of air–sea interactions to the climatology formation in the tropical Pacific, several sensitivity experiments with improved coupling physics have been performed in order to reduce the cold-tongue bias in CGCMs. By allowing for momentum transfer of the ocean surface current to the atmosphere [full coupled simulation (FCPL)] or merely reducing the wind stress by taking the surface current into account in the bulk formula [semicoupled simulation (semi-CPL)], the warm-pool/cold-tongue structure in the equatorial Pacific is simulated better than that of the control simulation (CTL) in which the movement of the ocean surface is ignored for wind stress calculation. The reduced surface zonal current and vertical entrainment owing to the reduced easterly wind stress tend to produce a warmer sea surface temperature (SST) in the western equatorial Pacific. Consequently, the dry bias there is much reduced. The warming tendency of the SST in the eastern Pacific, however, is largely suppressed by isopycnal diffusion and meridional advection of colder SST from south of the equator due to enhanced coastal upwelling near Peru. The ENSO signal in the western Pacific and its global teleconnection in the North Pacific are simulated more realistically. The approach as adopted in the FCPL run is able to generate a correct zonal SST slope and efficiently reduce the cold-tongue bias in the equatorial Pacific. The surface easterly wind itself in the FCPL run is weakened, reducing the easterly wind stress further. This is related with a weakened zonal Walker cell in the atmospheric boundary layer over the eastern Pacific and a new global angular momentum balance of the atmosphere associated with reduced westerly wind stress over the southern oceans.


Sign in / Sign up

Export Citation Format

Share Document