ENSO diversity and the recent appearance of Central Pacific ENSO

2019 ◽  
Vol 54 (1-2) ◽  
pp. 413-433 ◽  
Author(s):  
Ying Feng ◽  
Xianyao Chen ◽  
Ka-Kit Tung
2014 ◽  
Vol 120 (1-2) ◽  
pp. 55-67 ◽  
Author(s):  
Ruihuang Xie ◽  
Fei Huang ◽  
Fei-Fei Jin ◽  
Jian Huang

2012 ◽  
Vol 117 (C4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Marie-Hélène Radenac ◽  
Fabien Léger ◽  
Awnesh Singh ◽  
Thierry Delcroix

2020 ◽  
Author(s):  
Bastien Dieppois ◽  
Jonathan Eden ◽  
Paul-Arthur Monerie ◽  
Benjamin Pohl ◽  
Julien Crétat ◽  
...  

<p>It is now widely recognized that El Nino-Southern Oscillation (ENSO) occurs in more than one form, e.g. eastern and central Pacific ENSO. Given that these various ENSO flavours may contribute to climate variability and trends in different ways, this study presents a framework that treats ENSO as a continuum to examine its impact on precipitation, and to evaluate the performance of the last two generations of global climate models (GCMs): CMIP5 and CMIP6.</p><p>Uncertainties in the location and intensity of observed El Nino and La Nina events are assessed in various observational and satellite-derived products (ERSSTv5, COBESSTv2, HadSST1 and OISSTv2). The probability distributions of El Nino and La Nina event locations, and intensities, slightly differ from one observational data set to another. For instance, La Nina events are more intense and more likely to occur in the central Pacific using COBESSTv2. All these products also depict consistent decadal variations in the location and intensity of ENSO events: i) central Pacific ENSO events were more likely in the 1940/50s and from the 1980s; ii) eastern Pacific ENSO events were more likely in the 1910/20s and 1960/70s; iii) La Nina events have become more intense during the 20<sup>th</sup> and early 21<sup>st </sup>centuries.</p><p>These fluctuations in ENSO location and intensity are found to impact precipitation consistently across diverse global precipitation products (CRUv4.03, GPCCv8 and UDELv5.01). Over southern Africa, for instance, more intense eastern (central) Pacific El Nino events are found to favour drought conditions over northern (southern) regions during austral summer. By contrast, over the same regions, more intense La Nina events favours wet conditions, while the location of these events has little effect on precipitation. Over West Africa, ENSO locations favour a zonal (E-W) rainfall gradient in precipitation during boreal summer, while changes in ENSO intensity modulate the strength of the meridional (N-S) rainfall gradient.</p><p>Using both historical and pi-Control runs, we demonstrate that most CMIP5 and CMIP6 models favour either eastern or central Pacific ENSO events, but very few models are able to capture the full observed ENSO continuum. Regarding ENSO impacts on worldwide precipitation, contrasted results appear in most models.</p>


2018 ◽  
Vol 11 (6) ◽  
pp. 2373-2392 ◽  
Author(s):  
Tatiana Matveeva ◽  
Daria Gushchina ◽  
Boris Dewitte

Abstract. The El Niño–Southern Oscillation (ENSO) is tightly linked to the intraseasonal tropical variability (ITV) that contributes to energise the deterministic ocean dynamics during the development of El Niño. Here, the relationship between ITV and ENSO is assessed based on models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) taking into account the so-called diversity of ENSO, that is, the existence of two types of events (central Pacific versus eastern Pacific El Niño). As a first step, the models' skill in simulating ENSO diversity is assessed. The characteristics of the ITV are then documented revealing a large dispersion within an ensemble of 16 models. A total of 11 models exhibit some skill in simulating the key aspects of the ITV for ENSO: the total variance along the Equator, the seasonal cycle and the characteristics of the propagation along the Equator of the Madden–Julian oscillation (MJO) and the convectively coupled equatorial Rossby (ER) waves. Five models that account realistically for both the two types of El Niño events and ITV characteristics are used for the further analysis of seasonal ITV ∕ ENSO relationship. The results indicate a large dispersion among the models and an overall limited skill in accounting for the observed seasonal ITV ∕ ENSO relationship. Implications of our results are discussed in light of recent studies on the forcing mechanism of ENSO diversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonietta Capotondi ◽  
Lucrezia Ricciardulli

AbstractThe differences in ENSO sea surface temperature (SST) spatial patterns, whether centered in the Eastern Pacific (EP), Central Pacific (CP) or in the eastern-central equatorial region (“canonical”) have been associated to differences in atmospheric teleconnections and global impacts. However, predicting different types of ENSO events has proved challenging, highlighting the need for a deeper understanding of their predictability. Given the key role played by wind variations in the development and evolution of ENSO events, this study examines the relationship between the leading modes of Pacific surface wind speed variability and ENSO diversity using three different state-of-the-art wind products, including satellite observations and atmospheric reanalyses. Although previous studies have associated different ENSO precursors to either EP or CP events, our results indicate that the most prominent of those ENSO precursors are primarily related to canonical and CP events, and show little correlation with EP events. The latter are associated with tropical Pacific conditions favoring equatorial westerly wind and precipitation anomalies that extend all the way to the eastern Pacific. Results over the entire twentieth century period versus those during the satellite era also suggest that the influences from the Southern Hemisphere may be more robust than those from the Northern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document