scholarly journals A study of the effects of westerly wind bursts on ENSO based on CESM

2019 ◽  
Vol 54 (1-2) ◽  
pp. 885-899 ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Zhixiong Yao ◽  
Xiaojing Li ◽  
...  

AbstractNumerous works have indicated that westerly wind bursts (WWBs) have a significant contribution to the development of El Niño events. However, the simulation of WWBs commonly suffers from large biases in the current generation of coupled general circulation models (CGCMs), limiting our ability to predict El Niño events. In this study, we introduce a WWBs parameterization scheme into the global coupled Community Earth System Model (CESM) to improve the representation of WWBs and to study the impacts of WWBs on El Niño-Southern Oscillation (ENSO) characteristics. It is found that CESM with the WWBs parameterization scheme can generate more realistic characteristics of WWBs, in particular their location and seasonal variation of occurrence. With the parameterized WWBs, the skewness of the Niño 3 index is increased, in better agreement with observation. Eastern Pacific El Niño and central Pacific El Niño events could be successfully reproduced in the model run with WWBs parameterization. Further diagnoses show that the enhanced horizontal advection in the central Pacific and vertical advection in the eastern Pacific, both of which are triggered by WWBs, are crucial factors responsible for the improvements in ENSO simulation. Clearly, WWBs have important effects on ENSO asymmetry and ENSO diversity.

2014 ◽  
Vol 41 (13) ◽  
pp. 4654-4663 ◽  
Author(s):  
Shineng Hu ◽  
Alexey V. Fedorov ◽  
Matthieu Lengaigne ◽  
Eric Guilyardi

2014 ◽  
Vol 44 (5-6) ◽  
pp. 1381-1401 ◽  
Author(s):  
Alexey V. Fedorov ◽  
Shineng Hu ◽  
Matthieu Lengaigne ◽  
Eric Guilyardi

2018 ◽  
Vol 31 (2) ◽  
pp. 593-612
Author(s):  
Ayako Seiki ◽  
Yukari N. Takayabu ◽  
Takuya Hasegawa ◽  
Kunio Yoneyama

The lack of westerly wind bursts (WWBs) when atmospheric intraseasonal variability (ISV) events occur from boreal spring to autumn is investigated by comparing two types of El Niño years with unmaterialized El Niño (UEN) years. Although high ocean heat content buildup and several ISV events propagating eastward are observed in all three types of years, few WWBs accompany these in the UEN years. The eddy kinetic energy budget analysis based on ISV shows that mean westerly winds in the lower troposphere facilitate the development of eddy disturbances, including WWBs, through convergence and meridional shear of zonal winds. In the UEN years, these westerly winds are retracted westward and do not reach the equatorial central Pacific mainly as a result of interannual components. In addition, positive sea surface temperature anomalies in the western Pacific, which are conducive to active convection, spread widely in a meridional direction centered on 15°N. Both westward-retracted mean westerlies and off-equatorial warming enhance off-equatorial eddies, which result in a reduction in equatorial eddies such as WWBs. The characteristics of the UEN years are significantly different from those observed during the eastern Pacific El Niño (EP-EN) years, which are characterized by anomalous cooling (warming) and suppressed (enhanced) convective eddies in the off-equatorial (equatorial) western Pacific. The central Pacific El Niño years show mixed features during both EP-EN and UEN years. Different background states not only in the equatorial region but also in the off-equatorial region can be a reason for the lack of WWBs in the UEN years.


2007 ◽  
Vol 135 (10) ◽  
pp. 3346-3361 ◽  
Author(s):  
Ayako Seiki ◽  
Yukari N. Takayabu

Abstract The mechanism of synoptic-scale eddy development in the generation of westerly wind bursts (WWBs) over the western–central Pacific, and their relationship with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO), were examined. In the WWB occurrences, barotropic structures of equatorial eddy westerlies with cyclonic disturbances were found from the surface to the upper troposphere. The dominant contributions to substantial eddy kinetic energy (EKE) were the barotropic energy conversion (KmKe) in the lower and middle tropospheres and the conversion from eddy available potential energy (PeKe) in the upper troposphere. Low-frequency environmental westerlies centered near the equator preceded strong zonal convergence and meridional shear, resulting in the substantial KmKe. The activation of synoptic convection also contributed to an increase in EKE through PeKe. These energies were redistributed to the lower-equatorial troposphere through energy flux convergence (GKe). These results showed that environmental fields contribute to the EKE increase near the equator and are important factors in WWB occurrences. Next, eddy growth was compared under different phases of MJO and ENSO. The MJO westerly phases of strong MJO events were classified into two groups, in terms of ENSO phases. Higher EKE values were found over the equatorial central Pacific in the WWB–ENSO correlated (pre–El Niño) periods. The energetics during these periods comported with those of the WWB generations. In the uncorrelated periods, the enhancement of eddy disturbances occurred far from the equator near the Philippines, where the activities of the easterly wave disturbances are well known. It is noteworthy that the enhanced region of the disturbances in the pre–El Niño periods coincided with the vicinity of large-scale MJO convection. It is suggested that coincidence corresponds with an enhancement of the internal disturbances embedded in the MJO, which is found only when the environmental conditions are favorable in association with ENSO.


2017 ◽  
Vol 30 (13) ◽  
pp. 4819-4842 ◽  
Author(s):  
Young-Kwon Lim ◽  
Robin M. Kovach ◽  
Steven Pawson ◽  
Guillaume Vernieres

The 2015/16 El Niño is analyzed using atmospheric and oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of this work is to compare and contrast it with two other strong El Niños, in 1982/83 and 1997/98. These three El Niño events are included in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses. MERRA-2 allows a comparison of fields derived from the underlying GEOS model, facilitating a more detailed comparison of physical forcing mechanisms in the El Niño events. Various atmospheric and oceanic structures indicate that the 2015/16 El Niño maximized in the Niño-3.4 region, with a large region of warming over most of the Pacific and Indian Oceans. The eastern tropical Indian Ocean, Maritime Continent, and western tropical Pacific are found to be less dry in boreal winter, compared to the earlier two strong events. Whereas the 2015/16 El Niño had an earlier occurrence of the equatorial Pacific warming and was the strongest event on record in the central Pacific, the 1997/98 event exhibited a more rapid growth due to stronger westerly wind bursts and the Madden–Julian oscillation during spring, making it the strongest El Niño in the eastern Pacific. Compared to 1982/83 and 1997/98, the 2015/16 event had a shallower thermocline over the eastern Pacific with a weaker zonal contrast of subsurface water temperatures along the equatorial Pacific. While the three major ENSO events have similarities, each is unique when looking at the atmosphere and ocean surface and subsurface.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 476
Author(s):  
Zhiyuan Zhang ◽  
Gen Li

The diversity of El Niño is a critical field of the climate research. The eastern Pacific (EP) and central Pacific (CP) types of El Niño have been identified in the previous studies. However, the extreme El Niño event that occurred in 2015–2016 is quite different from both the EP and CP El Niño events. The sea surface temperatures anomalies (SSTA) for this event widely spread in both the central and eastern Pacific and have a small zonal gradient in the central-eastern Pacific. Many researchers regarded this event as a mixed type of El Niño. Using the regression-EOF method, the Mix El Niño pattern is extracted from the tropical Pacific SSTA field during the period from 1900 to 2019. Here, we reveal that the Mix El Niño is a very usual rather than a new type of El Niño, it is just that the EP and CP El Niño events are more frequent since the 1980s, while the Mix El Niño events frequently appear before the 1980s. The time-spatial features of the Mix El Niño are further investigated. The results demonstrate a unique westward propagation of the maximum SSTA for the Mix El Niño from the far eastern Pacific to the central Pacific. In contrast, the SSTA center is locked in the far eastern Pacific region for the EP El Niño and the central Pacific region for the CP El Niño. The evolutions of subsurface ocean temperature anomalies and sea surface height anomalies are also examined to support this. The ocean–atmosphere interaction plays an important role in the evolution of the Mix El Niño. The anomalous atmospheric Walker circulation for the Mix El Niño is mainly in the western and central Pacific as well as very weak in the eastern Pacific. In contrast, there are significant westerlies/easterlies in the eastern Pacific for the EP/CP El Niño. The small gradient of SSTA in the central-eastern Pacific for the Mix El Niño leads to weak zonal wind anomalies, which further weaken the zonal gradient of SSTA. All this suggests that the Mix El Niño is not unusual and fundamentally different from the EP and CP El Niño with important implications for global climate effects.


2019 ◽  
Vol 199 ◽  
pp. 103225 ◽  
Author(s):  
Jifeng Qi ◽  
Linlin Zhang ◽  
Tangdong Qu ◽  
Baoshu Yin ◽  
Zhenhua Xu ◽  
...  

2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document