parameterization scheme
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 43)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mingjie Ma ◽  
Xinghua Yang ◽  
Qing He ◽  
Ali Mamtimin

Abstract Based on meteorological and dust devil intensification observation data in the desert transition zone of the Xiaotang region in the northern margin of the Taklimakan Desert, and combined with GPS sounding in the hinterland of the Taklimakan Desert, this study investigated the improvement and evaluation of the dust devil parameterization scheme. The results indicate that the thermodynamic efficiency of dust devils after improvement was significantly higher than that before improvement, improving the values by 84.7%, 63.9%, 25.6%, 13.3%, 12.5%, 22.7%, 26.6%, 26.9%, and 21.4% for the hourly intervals from 09:00–17:00, respectively. The annual occurrence of dust devils after improvement was 431 times, 55.2% more than before improvement. The correlation coefficients of convective boundary layer height after improvement was 0.96, higher than that before improvement (0.908). After the improvement, the total annual dust emission time was 181.3 h, 95.9% less than that calculated using the day length before improvement, and 31.8% more than that calculated using sunshine time before improvement. After the improvement, the average vertical dust flux of a single dust devil was 0.25 m2/s, 68.8% less than that before improvement. After the improvement, the average annual dust emission from dust devils per square kilometer was 15.3 t/km2, significantly lower than the value of 320.5 t/km2 before the improvement, approximately one-twentieth of the value.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1666
Author(s):  
Qiang Long ◽  
Bingui Wu ◽  
Xinyue Mi ◽  
Shuang Liu ◽  
Xiaochen Fei ◽  
...  

Low visibility, associated with fog, severely affects land, marine, and air transportation. Visibility is an important indicator to identify different intensities of fog; therefore, improving the ability to forecast visibility in fog is an urgent need for social and economic development. Establishing a proper visibility parameterization scheme is crucial to improving the accuracy of fog forecast operation. Considering various visibility impact factors, including RH, Nd, D, LWC, the parameterization formula of visibility in fog, as well as their performance in meteorology operation, are reviewed. Moreover, the estimated ability of the visibility parameterization formulas combined with the numerical model is briefly described, and their advantages and shortcomings are pointed out.


2021 ◽  
Author(s):  
Xin Wang ◽  
Yilun Han ◽  
Wei Xue ◽  
Guangwen Yang ◽  
Guang J. Zhang

Abstract. In climate models, subgrid parameterizations of convection and cloud are one of the main reasons for the biases in precipitation and atmospheric circulation simulations. In recent years, due to the rapid development of data science, Machine learning (ML) parameterizations for convection and clouds have been proven the potential to perform better than conventional parameterizations. At present, most of the existing studies are on aqua-planet and idealized models, and the problems of simulated instability and climate drift still exist. In realistic configurated models, developing a machine learning parameterization scheme remains a challenging task. In this study, a group of deep residual multilayer perceptrons with strong nonlinear fitting ability is designed to learn a parameterization scheme from cloud-resolving model outputs. Multi-target training is achieved to best balance the fits across diverse neural network outputs. The optimal machine learning parameterization, named NN-Parameterization, is further chosen among feasible candidates for both high performance and long-term simulation. The results show that NN-Parameterization performs well in multi-year climate simulations and reproduces reasonable climatology and climate variability in a general circulation model (GCM), with a running speed of about 30 times faster than the cloud-resolving model embedded Superparameterizated GCM. Under real geographical boundary conditions, the hybrid ML-physical GCM well simulates the spatial distribution of precipitation and significantly improves the frequency of precipitation extremes, which is largely underestimated in the Community Atmospheric Model version 5 (CAM5) with the horizontal resolution of 1.9° × 2.5°. Furthermore, the hybrid ML-physical GCM simulates a stronger signal of the Madden-Julian oscillation with a more reasonable propagation speed, which is too weak and propagates too fast in CAM5. This study is a pioneer to achieve multi-year stable climate simulations using a hybrid ML-physical GCM in actual land-ocean boundary conditions. It demonstrates the emerging potential for using machine learning parameterizations in climate simulations.


Author(s):  
Nam Hee Kim ◽  
Hung Yu Ling ◽  
Zhaoming Xie ◽  
Michiel van de Panne

Animated motions should be simple to direct while also being plausible. We present a flexible keyframe-based character animation system that generates plausible simulated motions for both physically-feasible and physically-infeasible motion specifications. We introduce a novel control parameterization, optimizing over internal actions, external assistive-force modulation, and keyframe timing. Our method allows for emergent behaviors between keyframes, does not require advance knowledge of contacts or exact motion timing, supports the creation of physically impossible motions, and allows for near-interactive motion creation. The use of a shooting method allows for the use of any black-box simulator. We present results for a variety of 2D and 3D characters and motions, using sparse and dense keyframes. We compare our control parameterization scheme against other possible approaches for incorporating external assistive forces.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1194
Author(s):  
Seung-Bu Park ◽  
Ji-Young Han

The convective parameterization scheme of the Korean Integrated Model (KIM) is tentatively modified to suppress grid-point storms in the Western Pacific Ocean. The KIM v3.2.11 suffers from the numerical problem that grid-point storms degrade forecasts in the tropical oceans and around the Korean Peninsula. Another convective parameterization scheme, the new Tiedtke scheme, is implemented in the KIM. The artificial storms are suppressed in the test version because the heating and drying tendencies of the new Tiedtke scheme are stronger than those of the default KIM Simplified Arakawa-Schubert (KSAS) scheme. Based on this comparison, the KSAS scheme is modified to strengthen its heating and drying tendencies by reducing the entrainment and detrainment rates. The modified KSAS scheme suppresses grid-point storms and thus decreases grid-scale precipitation in a summertime case simulation. Twenty 10-day forecasts with the default convection scheme (KSAS) and twenty forecasts with the modified scheme are conducted and compared with each other, confirming that the modified KSAS scheme successfully suppresses grid-point storms.


2021 ◽  
Vol 21 (17) ◽  
pp. 12989-13010
Author(s):  
Baseerat Romshoo ◽  
Thomas Müller ◽  
Sascha Pfeifer ◽  
Jorge Saturno ◽  
Andreas Nowak ◽  
...  

Abstract. The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent ageing involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the optical properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how optical properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFA optical properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The optical properties are calculated using the multiple-sphere T-matrix (MSTM) method. For the first time, the modelled optical properties of BC are expressed in terms of mobility diameter (Dmob), making the results more relevant and relatable for ambient and laboratory BC studies. Amongst size, morphology, and composition, all the optical properties showed the highest variability with changing size. The cross sections varied from 0.0001 to 0.1 µm2 for BCFA Dmob ranging from 24 to 810 nm. It has been shown that MACBC and single-scattering albedo (SSA) are sensitive to morphology, especially for larger particles with Dmob > 100 nm. Therefore, while using the simplified core–shell representation of BC in global models, the influence of morphology on radiative forcing estimations might not be adequately considered. The Ångström absorption exponent (AAE) varied from 1.06 up to 3.6 and increased with the fraction of organics (forganics). Measurement results of AAE ≫ 1 are often misinterpreted as biomass burning aerosol, it was observed that the AAE of purely black carbon particles can be ≫ 1 in the case of larger BC particles. The values of the absorption enhancement factor (Eλ) via coating were found to be between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres and from MSTM for coated BCFAs. Mie-calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive to modifications in morphology and composition. The black carbon radiative forcing ΔFTOA (W m−2) decreases up to 61 % as the BCFA becomes more compact, indicating that global model calculations should account for changes in morphology. A decrease of more than 50 % in ΔFTOA was observed as the organic content of the particle increased up to 90 %. The changes in the ageing factors (composition and morphology) in tandem result in an overall decrease in the ΔFTOA. A parameterization scheme for optical properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross sections (extinction, absorption, and scattering), single-scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning an extensive parameter space, the developed parameterization scheme showed promisingly high accuracy up to 98 % for the cross sections, 97 % for single-scattering albedos (SSAs), and 82 % for the asymmetry parameter (g).


2021 ◽  
Author(s):  
Lian Liu ◽  
Yaoming Ma ◽  
Massimo Menenti ◽  
Rongmingzhu Su ◽  
Nan Yao ◽  
...  

Abstract. Snow albedo is important to the land surface energy balance and to the water cycle. During snowfall and subsequent snowmelt, snow albedo is usually parameterized as functions of snow related variables in land surface models. However, the default snow albedo scheme in the widely used Noah land surface model shows evident shortcomings in land-atmosphere interactions estimates during snow events on the Tibetan Plateau. Here, we demonstrate that our improved snow albedo scheme performs well after including snow depth as an additional factor. By coupling the WRF and Noah models, this study comprehensively evaluates the performance of the improved snow albedo scheme in simulating eight snow events on the Tibetan Plateau. The modeling results are compared with WRF run with the default Noah scheme and in situ observations. The improved snow albedo scheme significantly outperforms the default Noah scheme in relation to air temperature, albedo and sensible heat flux estimates, by alleviating cold bias estimates, albedo overestimates and sensible heat flux underestimates, respectively. This in turn contributes to more accurate reproductions of snow event evolution. The averaged RMSE relative reductions (and relative increase in correlation coefficients) for air temperature, albedo, sensible heat flux and snow depth reach 27 % (5 %), 32 % (69 %), 13 % (17 %) and 21 % (108 %) respectively. These results demonstrate the strong potential of our improved snow albedo parameterization scheme for snow event simulations on the Tibetan Plateau. Our study provides a theoretical reference for researchers committed to further improving the snow albedo parameterization scheme.


Sign in / Sign up

Export Citation Format

Share Document