cp el niño
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 24)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Zhongjing Jiang ◽  
Jing Li

Abstract. Tropospheric ozone is an essential atmospheric component as it plays a significant role in influencing radiation equilibrium and ecological health. It is affected not only by anthropogenic activities but also by natural climate variabilities. Here we examine the tropospheric ozone change in China associated with the Eastern Pacific (EP) and Central Pacific (CP) El Niño using satellite observations from 2007 to 2017 and GEOS-Chem simulations from 1980 to 2017. GEOS-Chem simulations reasonably reproduce the satellite-retrieved lower tropospheric ozone (LTO) changes despite a slight underestimation. Results show that El Niño generally exerts negative impacts on LTO concentration in China, except for southeastern China during the pre-CP El Niño autumn and post-EP El Niño summer. The budget analysis further indicates that for both events, LTO changes are dominated by the transport process controlled by circulation patterns and the chemical process influenced by local meteorological anomalies associated with El Niño, especially the solar radiation and relative humidity changes. The differences between EP and CP-induced LTO changes mostly lie in southern China. The different strengths, positions, and duration of western North Pacific anomalous anticyclone (WNPAC) induced by tropical warming are likely responsible for the different EP and CP LTO changes. During the post-EP El Niño summer, the Indian ocean capacitor also plays an important role in controlling LTO changes over southern China.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1689
Author(s):  
Min Wu ◽  
Li Qi

This study investigates the evolution of the sea surface temperature (SST) over the cold tongue (CT) region in the central South China Sea (SCS) during various El Niño events. A significant and distinct double-peak warming evolution can occur during EP El Niño and CP El Niño events, with the former being more remarkable and robust than the latter. Further analyses show that the weak and insignificant CT SST anomaly in CP El Niño events is influenced by some CP El Niño events in which the warm sea surface temperature anomaly (SSTA) is located west of 175° E (WCP El Niño). The response of CT SSTA mainly depends on the warm SSTA location of CP El Niño. The different corresponding mechanisms in winter, spring and summer are discussed respectively in this work. Further analysis reveals that the weak and insignificant SST anomaly over the CT region in CP El Niño events is caused by the faint SSTA response during the WCP El Niño events. The results of this study call attention to the response of the SCS climate in both atmosphere and ocean to the diversity of ENSO, especially the CP El Niño.


Author(s):  
Li-Chiao Wang ◽  
Juilin Li ◽  
Kuan-Man Xu ◽  
Lan Thi Dao ◽  
Wei-Liang Lee ◽  
...  

Abstract The impacts of falling ice (snow) radiative effects (FIREs) on simulated surface wind stress and sea surface temperature (SST) in Central Pacific El Niño (CP-El Niño) under a progressive warming climate are examined. Using controlled simulations with the CESM1 model, it is shown that the exclusion of FIREs (No snow: NOS) generates persistent westerly anomalies in surface wind stress relative to that with FIREs (Snow on: SON). These anomalies subsequently lead to a weakening of the easterly trade winds associated with warmer SST anomalies in modeled life cycle. Results over three separated 40-year intervals (P1: 21-60 years; P2: 61-100 years; P3: 101-140 years) are compared with Coupled Model Intercomparison Project phase 5 (CMIP5) models without FIREs. Both NOS configuration and CMIP5 models simulate longer life cycles of CP-El Niño events with weakening easterlies and warmer SST anomalies on the equator, persistently propagating eastward from the mature to dissipating phases. Compared to NOS, SON, on the other hand, produces a shorter CP-El Niño life cycle together with stronger easterlies and colder SSTs over the eastern to central equatorial Pacific. The magnitudes of the simulated westerlies and warm SST anomalies tend to diminish without eastward shifting following the peak of the CP-El Niño activity. There are substantial differences in CP-El Niño characteristics from P1 to P3 between NOS and SON. During P1, both SON and NOS show patterns which are consistent with their present-day counterparts. In P2 and P3, SON exhibits a prolonged CP-El Niño life cycle, while NOS develops a double-peak El Niño evolution at the mature and decaying phases. Regarding El Niño diversity and the projections, the CMIP5 models have not reached a consensus. The inclusion of the FIREs would increase the confidence in simulating El Niño future behavior.


2021 ◽  
pp. 1-47

Abstract The longitudinal location of precipitation anomalies over the equatorial Pacific shows a distinctive feature with the westernmost location for La Niña, the easternmost location for eastern-Pacific (EP) El Niño and somewhere between for central-Pacific (CP) El Niño, even though the center of the sea surface temperature anomaly (SSTA) for La Niña is located slightly east of that of CP El Niño. The mechanisms for such a precipitation diversity were investigated through idealized model simulations and moisture and moist static energy budget analyses. It is revealed that the boundary layer convergence anomalies associated with the precipitation diversity are mainly induced by underlying SSTA through the Lindzen-Nigam mechanism, that is, their longitudinal locations are mainly controlled by the meridional and zonal distributions of the ENSO SSTA. The westward shift of the precipitation anomaly center during La Niña relative to that during CP El Niño is primarily caused by the combined effects of nonlinear zonal moist enthalpy advection anomalies and the Lindzen-Nigam mechanism mentioned above. Such a zonal diversity is further enhanced by the “convection-cloud-longwave radiation” feedback, the SST-induced latent heat flux anomalies and the advection of mean moist enthalpy by anomalous winds. This diversity in the longitudinal location of precipitation anomalies has contributions to the diversities in the longitudinal locations of anomalous Walker Circulation and western North Pacific anomalous anticyclone/cyclone among the three types of ENSO.


2021 ◽  
pp. 1-58
Author(s):  
Hanna Heidemann ◽  
Joachim Ribbe ◽  
Tim Cowan ◽  
Benjamin J. Henley ◽  
Christa Pudmenzky ◽  
...  

AbstractMonsoonal rainfall varies substantially in Northern Australia (AUMR) on interannual, decadal and longer time scales, profoundly impacting natural systems and agricultural communities. Some of this variability arises in response to sea surface temperature (SST) variability in the Indo-Pacific linked to both the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). Here we use observations to investigate unresolved issues regarding the influence of the IPO and ENSO on AUMR. Specifically, we show that during negative IPO phases, central Pacific (CP) El Niño events are associated with below average rainfall over northeast Australia, an anomalous anticyclonic pattern to the northwest of Australia, and eastward moisture advection towards the Dateline. In contrast, CP La Niña events (distinct from eastern Pacific La Niña events) during negative IPO phases drive significantly wet conditions over much of northern Australia, a strengthened Walker Circulation, and large-scale moisture flux convergence. During positive IPO phases, the impact of CP El Niño and CP La Niña events on AUMR is weaker. The influence of central Pacific SSTs on AUMR has been stronger during the recent (post-1999) negative IPO phase. The extent to which this strengthening is associated with climate change or merely natural, internal variability is not known.


2021 ◽  
Author(s):  
Tao Lingjiang ◽  
Duan Wansuo

Abstract In recent decades, the tropical Pacific frequently experiences a new type of El Niño with warming center in the central tropical Pacific (i.e., the CP-El Niño) with distinct global climate effect to the traditional El Niño (i.e., EP-El Niño). Predicting the El Niño diversity is still a huge challenge for climatologists partly due to the precursory signals of El Niño events with different type is unclear. In the present study, a novel precursory signal that presents a negative sea surface temperature anomaly in the eastern tropical Pacific (i.e., EP-cooling mode) is revealed, which tends to evolve into a CP-El Niño event. The transition from the EP-cooling mode to CP-El Niño is explained by the basin-scale air-sea coupling in the tropical Pacific and teleconnections between the tropical and North Pacific. With the EP-cooling mode as a predictor, the forecast skill for the CP-El Niño in hindcast experiments is obviously improved by using regression models. The results in the present study are therefore instructive for promoting a better understanding of El Niño diversity and predictability.


2021 ◽  
pp. 1-47
Author(s):  
XIAODAN YANG ◽  
YAJUAN SONG ◽  
MENG WEI ◽  
YUHUAN XUE ◽  
ZHENYA SONG

AbstractIn this paper, the different effects of the eastern equatorial Pacific (EP) and central equatorial Pacific (CP) El Niño-Southern Oscillation (ENSO) events on interannual variation in the diurnal sea surface temperature (SST) are explored in both the Niño 3 and Niño 4 regions. In the Niño 3 region, the diurnal SST anomaly (DSSTA) is negative during both EP and CP El Niño events and becomes positive during both EP and CP La Niña events. However, the DSSTA in the Niño 4 region is positive in El Niño years and negative in La Niña years, which is opposite to that in the Niño 3 region. Further analysis indicates that the incident shortwave radiation (SWR), wind stress (WS), and upward latent heat flux (LHF) are the main factors causing the interannual variation in the DSST. In the Niño 3 region, the decreased/increased SWR and the increased (decreased) LHF lead to the negative (positive) DSSTA in EP El Niño (La Niña) years. In addition, the enhanced (reduced) WS and the increased (decreased) LHF cause the negative (positive) DSSTA in CP El Niño (La Niña) years. In the Niño 4 region, the reduced (enhanced) trade wind plays a key role in producing in the positive (negative) DSSTA, while the decreased (increased) SWR has an opposite effect that reduces/increases the range of the DSSTA during both EP and CP El Niño (La Niña) events.


2021 ◽  
pp. 1-76
Author(s):  
Chao Zhang ◽  
Tim Li ◽  
Shuanglin Li

AbstractBased on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP-) El Niño and eastern Pacific (EP-) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September to November). The tropical heat sources associated with EP-El Niño and the co-occurred positive phase of Indian Ocean Dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross-Amundsen-Bellingshausen Seas. Anomalous northerly (southerly) wind west (east) of the anomalous anticyclone favor poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advected warmer and wetter (colder and drier) air into the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP-El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross-Amundsen Seas, 20° west of that caused by EP-El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP-El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP-El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes.


2021 ◽  
pp. 1-49
Author(s):  
Xieyuan Wang ◽  
Tim Li ◽  
Chao He

AbstractThrough the diagnosis of 29 Atmospheric Model Inter-comparison Project (AMIP) experiments from the CMIP5 inter-comparison project, we investigate the impact of the mean state on simulated western North Pacific anomalous anticyclone (WNPAC) during El Niño decaying summer. The result indicates that the inter-model difference of the JJA mean precipitation in the Indo-western Pacific warm pool is responsible for the difference of the WNPAC. During the decaying summer of an Eastern Pacific (EP) type El Niño, a model that simulates excessive mean rainfall over the western North Pacific (WNP) reproduces a stronger WNPAC response, through an enhanced local convection-circulation-moisture feedback. The intensity of the simulated WNPAC during the decay summer of a Central Pacific (CP) type El Niño, on the other hand, depends on the mean precipitation over the tropical Indian Ocean. The distinctive WNPAC-mean precipitation relationships between the EP and CP El Niño result from different anomalous SST patterns in the WNP. While the local SST anomaly plays an active role in maintaining the WNPAC during the EP El Niño, it plays a passive role during the CP El Niño. As a result, only the mean-state precipitation/moisture field in the tropical Indian Ocean modulates the circulation anomaly in the WNP in the latter case.


Sign in / Sign up

Export Citation Format

Share Document