scholarly journals The 2015/16 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/83 and 1997/98

2017 ◽  
Vol 30 (13) ◽  
pp. 4819-4842 ◽  
Author(s):  
Young-Kwon Lim ◽  
Robin M. Kovach ◽  
Steven Pawson ◽  
Guillaume Vernieres

The 2015/16 El Niño is analyzed using atmospheric and oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of this work is to compare and contrast it with two other strong El Niños, in 1982/83 and 1997/98. These three El Niño events are included in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses. MERRA-2 allows a comparison of fields derived from the underlying GEOS model, facilitating a more detailed comparison of physical forcing mechanisms in the El Niño events. Various atmospheric and oceanic structures indicate that the 2015/16 El Niño maximized in the Niño-3.4 region, with a large region of warming over most of the Pacific and Indian Oceans. The eastern tropical Indian Ocean, Maritime Continent, and western tropical Pacific are found to be less dry in boreal winter, compared to the earlier two strong events. Whereas the 2015/16 El Niño had an earlier occurrence of the equatorial Pacific warming and was the strongest event on record in the central Pacific, the 1997/98 event exhibited a more rapid growth due to stronger westerly wind bursts and the Madden–Julian oscillation during spring, making it the strongest El Niño in the eastern Pacific. Compared to 1982/83 and 1997/98, the 2015/16 event had a shallower thermocline over the eastern Pacific with a weaker zonal contrast of subsurface water temperatures along the equatorial Pacific. While the three major ENSO events have similarities, each is unique when looking at the atmosphere and ocean surface and subsurface.

2019 ◽  
Vol 199 ◽  
pp. 103225 ◽  
Author(s):  
Jifeng Qi ◽  
Linlin Zhang ◽  
Tangdong Qu ◽  
Baoshu Yin ◽  
Zhenhua Xu ◽  
...  

2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 885-899 ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Zhixiong Yao ◽  
Xiaojing Li ◽  
...  

AbstractNumerous works have indicated that westerly wind bursts (WWBs) have a significant contribution to the development of El Niño events. However, the simulation of WWBs commonly suffers from large biases in the current generation of coupled general circulation models (CGCMs), limiting our ability to predict El Niño events. In this study, we introduce a WWBs parameterization scheme into the global coupled Community Earth System Model (CESM) to improve the representation of WWBs and to study the impacts of WWBs on El Niño-Southern Oscillation (ENSO) characteristics. It is found that CESM with the WWBs parameterization scheme can generate more realistic characteristics of WWBs, in particular their location and seasonal variation of occurrence. With the parameterized WWBs, the skewness of the Niño 3 index is increased, in better agreement with observation. Eastern Pacific El Niño and central Pacific El Niño events could be successfully reproduced in the model run with WWBs parameterization. Further diagnoses show that the enhanced horizontal advection in the central Pacific and vertical advection in the eastern Pacific, both of which are triggered by WWBs, are crucial factors responsible for the improvements in ENSO simulation. Clearly, WWBs have important effects on ENSO asymmetry and ENSO diversity.


2020 ◽  
Vol 33 (19) ◽  
pp. 8237-8260 ◽  
Author(s):  
Mandy B. Freund ◽  
Josephine R. Brown ◽  
Benjamin J. Henley ◽  
David J. Karoly ◽  
Jaclyn N. Brown

AbstractGiven the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.


2017 ◽  
Vol 30 (17) ◽  
pp. 6611-6627 ◽  
Author(s):  
Kang Xu ◽  
Rui Xin Huang ◽  
Weiqiang Wang ◽  
Congwen Zhu ◽  
Riyu Lu

The interannual fluctuations of the equatorial thermocline are usually associated with El Niño activity, but the linkage between the thermocline modes and El Niño is still under debate. In the present study, a mode function decomposition method is applied to the equatorial Pacific thermocline, and the results show that the first two dominant modes (M1 and M2) identify two distinct characteristics of the equatorial Pacific thermocline. The M1 reflects a basinwide zonally tilted thermocline related to the eastern Pacific (EP) El Niño, with shoaling (deepening) in the western (eastern) equatorial Pacific. The M2 represents the central Pacific (CP) El Niño, characterized by a V-shaped equatorial Pacific thermocline (i.e., deep in the central equatorial Pacific and shallow on both the western and eastern boundaries). Furthermore, both modes are stable and significant on the interannual time scale, and manifest as the major feature of the thermocline fluctuations associated with the two types of El Niño events. As good proxies of EP and CP El Niño events, thermocline-based indices clearly reveal the inherent characteristics of subsurface ocean responses during the evolution of El Niño events, which are characterized by the remarkable zonal eastward propagation of equatorial subsurface ocean temperature anomalies, particularly during the CP El Niño. Further analysis of the mixed layer heat budget suggests that the air–sea interactions determine the establishment and development stages of the CP El Niño, while the thermocline feedback is vital for its further development. These results highlight the key influence of equatorial Pacific thermocline fluctuations in conjunction with the air–sea interactions, on the CP El Niño.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 476
Author(s):  
Zhiyuan Zhang ◽  
Gen Li

The diversity of El Niño is a critical field of the climate research. The eastern Pacific (EP) and central Pacific (CP) types of El Niño have been identified in the previous studies. However, the extreme El Niño event that occurred in 2015–2016 is quite different from both the EP and CP El Niño events. The sea surface temperatures anomalies (SSTA) for this event widely spread in both the central and eastern Pacific and have a small zonal gradient in the central-eastern Pacific. Many researchers regarded this event as a mixed type of El Niño. Using the regression-EOF method, the Mix El Niño pattern is extracted from the tropical Pacific SSTA field during the period from 1900 to 2019. Here, we reveal that the Mix El Niño is a very usual rather than a new type of El Niño, it is just that the EP and CP El Niño events are more frequent since the 1980s, while the Mix El Niño events frequently appear before the 1980s. The time-spatial features of the Mix El Niño are further investigated. The results demonstrate a unique westward propagation of the maximum SSTA for the Mix El Niño from the far eastern Pacific to the central Pacific. In contrast, the SSTA center is locked in the far eastern Pacific region for the EP El Niño and the central Pacific region for the CP El Niño. The evolutions of subsurface ocean temperature anomalies and sea surface height anomalies are also examined to support this. The ocean–atmosphere interaction plays an important role in the evolution of the Mix El Niño. The anomalous atmospheric Walker circulation for the Mix El Niño is mainly in the western and central Pacific as well as very weak in the eastern Pacific. In contrast, there are significant westerlies/easterlies in the eastern Pacific for the EP/CP El Niño. The small gradient of SSTA in the central-eastern Pacific for the Mix El Niño leads to weak zonal wind anomalies, which further weaken the zonal gradient of SSTA. All this suggests that the Mix El Niño is not unusual and fundamentally different from the EP and CP El Niño with important implications for global climate effects.


2014 ◽  
Vol 10 (5) ◽  
pp. 3965-3987 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. J. Krusic ◽  
E. R. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño–Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics.


2021 ◽  
Author(s):  
Hui Xu ◽  
Lei Chen ◽  
Wansuo Duan

AbstractThe optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.


Sign in / Sign up

Export Citation Format

Share Document