Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model

2017 ◽  
Vol 138 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Pawel Zwolak ◽  
Jan Farei-Campagna ◽  
Thorsten Jentzsch ◽  
Brigitte von Rechenberg ◽  
Clément M. Werner
MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


1991 ◽  
Vol 141 (1) ◽  
pp. 1-7 ◽  
Author(s):  
K. Yamashita ◽  
Y. Horisaka ◽  
Y. Okamoto ◽  
Y. Yoshimura ◽  
N. Matsumoto ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1580 ◽  
Author(s):  
Andrés Parrilla-Almansa ◽  
Nuria García-Carrillo ◽  
Patricia Ros-Tárraga ◽  
Carlos Martínez ◽  
Francisco Martínez-Martínez ◽  
...  

The aim of this study was to manufacture and evaluate the effect of a biphasic calcium silicophosphate (CSP) scaffold ceramic, coated with a natural demineralized bone matrix (DBM), to evaluate the efficiency of this novel ceramic material in bone regeneration. The DBM-coated CSP ceramic was made by coating a CSP scaffold with gel DBM, produced by the partial sintering of different-sized porous granules. These scaffolds were used to reconstruct defects in rabbit tibiae, where CSP scaffolds acted as the control material. Micro-CT and histological analyses were performed to evaluate new bone formation at 1, 3, and 5 months post-surgery. The present research results showed a correlation among the data obtained by micro-CT and the histomorphological results, the gradual disintegration of the biomaterial, and the presence of free scaffold fragments dispersed inside the medullary cavity occupied by hematopoietic bone marrow over the 5-month study period. No difference was found between the DBM-coated and uncoated implants. The new bone tissue inside the implants increased with implantation time. Slightly less new bone formation was observed in the DBM-coated samples, but it was not statistically significant. Both the DBM-coated and the CSP scaffolds gave excellent bone tissue responses and good osteoconductivity.


2014 ◽  
Vol 14 (9) ◽  
pp. 2155-2163 ◽  
Author(s):  
Paul D. Kiely ◽  
Antonio T. Brecevich ◽  
Fadi Taher ◽  
Joseph T. Nguyen ◽  
Frank P. Cammisa ◽  
...  

2015 ◽  
Vol 104 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Dénes B. Horváthy ◽  
Gabriella Vácz ◽  
Tamás Szabó ◽  
Imola C. Szigyártó ◽  
Ildikó Toró ◽  
...  

Orthopedics ◽  
2007 ◽  
Vol 30 (7) ◽  
pp. 567-570 ◽  
Author(s):  
Alexander R. Vaccaro ◽  
Jon E. Block ◽  
Harrison A. Stubbs

Sign in / Sign up

Export Citation Format

Share Document