scholarly journals Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis

Chromosoma ◽  
2004 ◽  
Vol 112 (7) ◽  
pp. 342-349 ◽  
Author(s):  
P. Testillano ◽  
S. Georgiev ◽  
H. L. Mogensen ◽  
M. J. Coronado ◽  
C. Dumas ◽  
...  
2009 ◽  
Vol 57 (2) ◽  
pp. 155-164 ◽  
Author(s):  
D. Kahrizi ◽  
R. Mohammadi

This research aimed to study the androgenesis and spontaneous chromosome doubling of five barley genotypes using an isolated in vitro microspore culture technique, involving a completely randomized design (CRD) with three replications. Statistical analysis of embryogenesis and cytogenetic results showed that genotype had a significant effect on haploid embryogenesis (P<0.01) and on spontaneous chromosome doubling (P<0.05). The genotype Igri was found to have the highest potential to produce haploid embryos (1577 embryos from 100 anthers), followed by the genotypes Boyer/Rojo, Afzal/Turkman/Kavir, Ashar/Hebo and Agrigashar/Matico with 369, 304, 278 and 150 embryos from 100 anthers, respectively. The highest percentage of spontaneous chromosome doubling (76%) was observed for the genotype which had the lowest embryogenesis (Agrigashar/Matico) and the lowest (65%) for the genotype with the highest androgenic capacity (Igri). Microspore embryogenesis also showed comparatively higher genotypic (109.2) and phenotypic (109.5) coefficients of variation, heritability (99.62) and genetic advance (1206.77), indicating the pre-dominance of additive gene action in the control of this character in the material studied. Estimates of genetic parameters (PCV, GCV and heritability) for microspore embryogenesis were higher than for spontaneous doubled haploids. These results indicated that selection for androgenic capacity would be more effective than for spontaneous doubled haploids. The findings showed a negative relationship (r= −0.68) between embryogenesis and spontaneous chromosome doubling in the barley genotypes studied. All the large embryos used had high regenerability and good plantlet formation.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1957-1961 ◽  
Author(s):  
Elisabeth M. Meyer ◽  
Darren H. Touchell ◽  
Thomas G. Ranney

Hypericum L. H2003-004-016 is a complex hybrid among Hypericum frondosum Michx., Hypericum galioides Lam., and Hypericum kalmianum L. and exhibits valuable ornamental characteristics, including compact habit, bluish green foliage, and showy flowers. Inducing polyploidy may further enhance the ornamental traits of this hybrid and provide new opportunities for hybridizing with other naturally occurring polyploid Hypericum sp. In this study, in vitro shoot regeneration and treatment of regenerative callus with the dinitroaniline herbicide oryzalin (3,5-dinitro-N4,N4-dipropylsufanilamide) were investigated as a means of inducing allopolyploidy. First, in vitro regeneration was optimized for callus and shoot induction by culture of leaf explants on medium supplemented with benzylamino purine (BA) or meta-topolin (mT) at 5, 10, or 15 μM in combination with indoleacetic acid (IAA) at 0, 1.25, 2.5, or 5 μM. Both BA and mT treatments successfully induced regenerative callus and shoots. Multiple regression analysis estimated maximum regenerative callus (94%) and shoot induction (18 shoots per explant) in medium supplemented with 5 μM BA and 3.75 μM IAA. In the second part of the study, exposure of regenerative callus to oryzalin at 0, 7.5, 15, 30, 60, or 90 μM for durations of 3, 6, or 9 d was investigated for polyploid induction. There was no survival for any of the calli in the 60- or 90-μM oryzalin treatments, but calli subjected to the other treatments exhibited some survival and polyploid induction. Duration had no effect on callus survival or ploidy level, but oryzalin concentration was a significant factor in both. The greatest percentage (44%) of polyploids was induced with 30 μM oryzalin. Spontaneous chromosome doubling was observed in 8% of control explants receiving no oryzalin treatment.


2016 ◽  
Vol 128 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Giuseppe Cimò ◽  
Annalisa Marchese ◽  
Maria Antonietta Germanà

Author(s):  
A.G. Scott ◽  
D.W.R. White

Tissue culture was used in an attempt to obtain a fertile perennial ryegrass x tall fescue hybrid. Regenerated hybrid plants were found to be morphologically variable and contain extensive chromosome rearrangements. Spontaneous chromosome doubling had occurred as well as chromosome elimination. though no fertile hybrid plants have been obtained to date. Keywords: somaclonal variation, Lolium perenne, Festuca arundinacea, intergeneric hybrids


Author(s):  
Eduardo Berenguer ◽  
Elena A Minina ◽  
Elena Carneros ◽  
Ivett Bárány ◽  
Peter V Bozhkov ◽  
...  

Abstract Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


2001 ◽  
Vol 52 (359) ◽  
pp. 1227-1238
Author(s):  
K.J. Kasha ◽  
T.C. Hu ◽  
R. Oro ◽  
E. Simion ◽  
Y.S. Shim

2013 ◽  
Vol 5 (4) ◽  
pp. 485-489 ◽  
Author(s):  
Tina Oana CRISTEA

In vitro microspore culture is one of the top techniques utilised now-a-days for the obtaining of double haploid plants in many plant species, including Brassica. The pH of the medium is a critical factor for the success of In vitro microspore culture as it influences the invertase enzyme activity, translated at cellular level through an acceleration or reduction of sucrose cleavage. The results published until now shows rather contradictory findings, as the response of microspores have been proved to be highly depending on genotypes, most of them being focused on Brassica napus. Thus, in the present study, the effect of different NLN liquid medium pH, ranging between 5.0 to 7.0 were tested in order to establish the most suitable pH for the expression of embryogenic competences of microspores cultivated on medium In vitro and ultimately for the obtaining of microspore-derived embryos. Among the 11 values of pH tested, the best results were obtained on variants with pH 5.8 and 6.0, both in what concern the maintaining of microspores viability and the number of microspore-derived embryos. The findings of the present study provide a strong base for the establishment of an efficient protocol for the In vitro culture of microspore at Brassica oleracea L. genotypes with Romanian origin.


Sign in / Sign up

Export Citation Format

Share Document