scholarly journals VARIATION AMONG PERENNIAL RYEGRASS x TALL FESCUE PLANTS FROM TISSUE CULTURE

Author(s):  
A.G. Scott ◽  
D.W.R. White

Tissue culture was used in an attempt to obtain a fertile perennial ryegrass x tall fescue hybrid. Regenerated hybrid plants were found to be morphologically variable and contain extensive chromosome rearrangements. Spontaneous chromosome doubling had occurred as well as chromosome elimination. though no fertile hybrid plants have been obtained to date. Keywords: somaclonal variation, Lolium perenne, Festuca arundinacea, intergeneric hybrids

2011 ◽  
Vol 15 ◽  
pp. 157-162
Author(s):  
G.D. Milne

Recent discussion about pasture persistence concentrates on pastures based on perennial ryegrass, the most commonly used grass species. This paper raises the question as to whether some of the causes of poor pasture persistence are due to perennial ryegrass being used in environments to which it is not suited. The adaptation to environmental stresses, particularly water, temperature and nutrient deficiencies, in different regions of New Zealand of tall fescue, cocksfoot, phalaris, and lucerne are discussed, and how this impacts on persistence advantages over perennial ryegrass. Keywords: persistence, pasture, Dactylis glomerata, Festuca arundinacea, Lolium perenne, Medicago sativa, Phalaris aquatica


2000 ◽  
Vol 40 (8) ◽  
pp. 1059 ◽  
Author(s):  
W. J. Fulkerson ◽  
J. F. M. Fennell ◽  
K. Slack

A grazing study was conducted, over a 3-year period (1997–99), on the subtropical north coast of New South Wales, Australia, to compare the yield of prairie grass (Bromus willdenowii cv. Matua), tall fescue (Festuca arundinacea cv. Vulcan) and perennial ryegrass (Lolium perenne cv. Yatsyn), on a well-drained red krasnozem soil at Wollongbar Agricultural Research Institute (WAI) and on a heavy clay soil at Casino. The effect of grazing interval (equivalent to the time taken to regrow 1.5, 2.5 or 4 leaves/tiller) in spring, and forage quality of prairie grass in winter and spring was also assessed. At both sites, the dry matter (DM) yields of prairie grass over the establishment year and in year 2 were significantly (P<0.001) higher than for the other 2 grass species (mean for 2 years over the 2 sites was 23.8, 8.9 and 7.7 t DM/ha for prairie grass, ryegrass and tall fescue, respectively). In year 3, there was no production of tall fescue or ryegrass at the WAI site while prairie grass produced 11.3 t DM/ha although this was obtained from natural seedling recruitment after the sward was sprayed with a herbicide in February of that year. At the Casino site, ryegrass and tall fescue still made substantial growth in year 3 (3.1 and 2.1 t DM/ha for ryegrass and tall fescue, respectively) but this was significantly below the yields of prairie grass (5.5 t DM/ha). More frequent grazing of prairie grass in spring (equivalent to 1.5 leaves/tiller of regrowth) led to significantly (P<0.05) less plants surviving summer and less seedling recruitment in the following autumn. The annual yield of the 1.5 leaf treatment was significantly (P<0.05) lower than the remaining treatments but only in the third year of the study. Analysis of prairie grass forage samples, taken in June (vegetative sward) and November (reproductive sward), gave magnesium values of less than 0.2% DM which is below the concentration found in ryegrass and that recommended for dairy cattle. The Ca : P and K : (Ca + Mg) ratios in prairie grass improved, as a forage for dairy cows, with regrowth time up to 5 leaves/tiller. Metabolisable energy remained constant with regrowth time in June at 10.8 MJ/kg DM but fell significantly in November from 10.7 MJ/kg DM, immediately post-grazing, to 9.2 MJ/kg DM at the 4.5 leaves/tiller stage of regrowth. In contrast to observations in ryegrass, the water-soluble carbohydrate content of forage samples of prairie grass taken in November showed a substantial increase with regrowth time to over 12% DM at the 3 leaves/tiller stage of regrowth. The high productivity and forage quality of prairie grass obtained over a 3-year period suggests this grass species could be a suitable temperate perennial grass for subtropical dairy pastures. An appropriately long grazing interval in spring seems critical to optimise plant survival over summer and for adequate seed set for seedling recruitment the following autumn. If summer weeds and/or grasses invade to a significant extent, the large seedbank of prairie grass provides the opportunity to spray out the pasture in summer and rely on seedling recruitment to establish a new sward in autumn. The forage quality of prairie grass in winter and spring is similar to perennial ryegrass but the magnesium levels are substantially lower and stock grazing this type of pasture for extended periods would need to be supplemented with this mineral.


2012 ◽  
Vol 26 (4) ◽  
pp. 673-678 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
James T. Brosnan ◽  
Gregory K. Breeden

Flucarbazone controls certain grassy weeds in wheat and may have potential for controlling perennial ryegrass in tall fescue turf. The objective of these experiments was to investigate perennial ryegrass and tall fescue tolerance to flucarbazone at two application timings. In field experiments, flucarbazone applications in May were more injurious to both species than in February and March. Single applications of flucarbazone from 30 to 60 g ai ha−1in May injured both species 35 to 50% and sequential treatments increased injury approximately twofold. Two applications of flucarbazone at 60 g ha−1in May injured both grasses > 90%, similar to sequential applications of trifloxysulfuron at 29 g ai ha−1. In growth chamber experiments, injury from flucarbazone on both grasses increased as temperature increased from 10 to 30 C. Flucarbazone reduced total shoot biomass of both grasses at all temperatures after 4 wk. Overall, perennial ryegrass and tall fescue are tolerant to flucarbazone at moderate temperatures (10 to 20 C). However, injury increased substantially under warmer conditions (30 C), suggesting flucarbazone could control perennial ryegrass and tall fescue during late spring and early summer.


2007 ◽  
Vol 13 ◽  
pp. 369-372
Author(s):  
L.L. Blythe ◽  
A.M. Craig ◽  
C. Estill ◽  
C. Cebra

There are multiple vehicles for endophyte toxicosis in animals including exposure from pasture, straw residues and seed screenings. This report discusses the clinical cases typically seen with tall fescue and perennial ryegrass toxicosis in Oregon and Japan. Case I involves a herd of 330 Black Angus cattle. Before the March calving season the owner wished to increase the protein content of the feed ration by feeding pellets made of seed screenings and grass hay. Forty two animals were lost to tall fescue toxicosis and dry gangrene of the feet and legs. Case II involves 1300 beef cows in Eastern Oregon fed grass straw; 485 animals were lost due to dry gangrene characteristic of tall fescue toxicosis. Case III describes 4 of 15 cases of both tall fescue and perennial ryegrass toxicosis in Japanese black cattle. Case IV involves llamas and alpacas on pasture and lawn paddocks where some animals were affected by tall fescue and some by perennial ryegrass. Keywords: tall fescue, Festuca arundinacea L., perennial ryegrass, Lolium perenne, endophyte, Neotyphodium coenophialum, Neotyphodium lolii


Author(s):  
D.A. Mccallum ◽  
N.A. Thomson

The effect of a molluscicide or an insecticide on the establishment, by direct drilling of 'Grasslands Roa' tall fescue (Festuca arundinacea Schreb.) 'Ellett' perennial ryegrass (Lolium perenne L), and 'Grasslands Maru' phalaris (Phalaris aquatica L.) was measured in spring and autumn establishment over 2 years. In autumn after a wet summer the application of a molluscicide significantly increased seedling numbers and establishment yield for ryegrass and tall fescue. A molluscicide applied in autumn after a dry summer or in spring had no effect . Application of insecticide significantly improved the establishment of ryegrass and tall fescue in only one of the two springs and had no effect in autumn. Phalaris was the least responsive of the pasture species to either an insecticide or molluscicide. These differences observed at establishment resulting from the applications of a pesticide were not apparent in an assessment made 1 year later. For tall fescue the results recorded on seedling numbers and yield of sown species at establishment and 1 year would suggest that for this species establishment by direct drilling is not recommended. Keywords pasture establishment, 'Grasslands Roa' tall fescue, 'Ellett' ryegrass, 'Grasslands Maru' phalaris, direct drilling, molluscicide, insecticide


Author(s):  
J-P Praat ◽  
W.R. Ritchie ◽  
C.J. Baker ◽  
J. Hodgson

Establishment, botanical composition and production of direct-drilled perennial ryegrass and tall fescue were compared for two seeding rates in an autumn-sown, grazed trial. Tall fescue (Festuca arundinacea Schreb. cv. AU Triumph) was sown at either 17 or 3 1 kg/ha and perennial ryegrass (Lolium perenne L. cv. Grasslands Supernui) was sown at 12 and 23 kg/ha on 12 April, 1990 all with "Grasslands Pitau" white clover at 3 kg/ha. Measurements of herbage mass and botanical composition during the ensuing 2-year period showed that there was no advantage in terms of suppression of weed species or accumulation of herbage mass of the sown species from sowing more seed than that required to achieve a population of 450-500 plants/m2 of either ryegrass and tall fescue 6 weeks after sowing. A population of 150 white clover plants/m2 appeared to be adequate for development of a balanced sward. Establishment of fescue was slower than that of ryegrass but both species developed to productive swards after infrequent but close defoliation with dairy cattle in the first spring and subsequent rotational grazing by lactating dairy cows. Pasture establishment in Northland is difficult because of shallow topsoils. Direct drilling can preserve this fragile topsoil and successfully establish alternative species such as fescue as long as attention is paid to their establishment requirements. Alternative species may offer a solution to low feed availability of ryegmss in the summer and poor survival of ryegrass in poorly drained areas during the winter. Keywords: direct drilling, Festuca arundinacea, Lolium perenne, pasture establishment, seeding rate


2019 ◽  
Vol 70 (12) ◽  
pp. 1163
Author(s):  
M. E. Rogers ◽  
A. R. Lawson ◽  
K. B. Kelly

Perennial ryegrass (Lolium perenne L.) is the predominant perennial forage species used in temperate irrigated dairy-production systems in Australia. However, when temperatures are high, even with optimal irrigation strategies and nutrient inputs, dry matter (DM) production can be compromised. This research investigated the effects of perennial ryegrass and tall fescue genotypes and summer irrigation on (DM) production and survival. Ten perennial ryegrass cultivars, three hybrid ryegrasses and two cultivars of tall fescue (Festuca arundinacea (Schreb) Darbysh.) were sown in northern Victoria, Australia, in May 2014, and were managed under full irrigation or restricted irrigation (no irrigation between late December and mid-March) over a 3-year period. Measurements included net pasture accumulation (DM production), sward density (plant frequency) and water-soluble carbohydrate concentration. Apart from the expected differences in DM yield over the summer period between full irrigation and restricted irrigation, there were few differences in DM production among perennial ryegrass or tall fescue cultivars. Plant frequency declined significantly under restricted irrigation in Years 2 and 3 compared with full irrigation but there were no differences among perennial ryegrass cultivars. In Year 2, plant frequency was higher in the tall fescue cultivars than the ryegrass cultivars. The recovery pattern in DM production following recommencement of irrigation in mid-March (autumn) varied across years. In Year 1, plants recovered rapidly once irrigation recommenced in autumn. However, in Years 2 and 3, autumn and winter pasture accumulation under restricted irrigation was 30–35% less than under full irrigation. These differences were possibly related to decreases in plant frequency, as well as to differences in the amounts of residual pasture mass (or carbohydrate reserves) present when growth ceased. Analyses of the water-soluble carbohydrate concentrations in the pseudostem during summer and autumn in Year 3 showed differences in total water-soluble carbohydrate and in fructan and sucrose concentrations between irrigation treatments but no consistent differences among genotypes.


HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 798-800 ◽  
Author(s):  
John B. Workman ◽  
Patrick E. McCullough ◽  
F. Clint Waltz ◽  
James T. Brosnan ◽  
Gerald M. Henry

Turfgrass managers applying aminocyclopyrachlor for annual and perennial broadleaf weed control in cool-season turfgrasses may want to reseed into treated areas. Field experiments were conducted in Georgia), Tennessee, and Texas to investigate perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) reseeding intervals after aminocyclopyrachlor applications. Perennial ryegrass and tall fescue establishment were similar to the non-treated control after treatments of aminocyclopyrachlor and 2,4-dichlorophenoxyacetic acid (2,4-D) + dicamba + methylchlorophenoxypropionic acid (MCPP) at 0, 2, 4, or 6 weeks before seeding. Results demonstrate that no reseeding interval is required after aminocyclopyrachlor treatment. Perennial ryegrass and tall fescue can be safely seeded immediately after aminocyclopyrachlor treatment at 39, 79, and 158 g/a.i./ha.


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 648-650 ◽  
Author(s):  
Patrick E. McCullough ◽  
James T. Brosnan ◽  
Gregory K. Breeden

Turf managers applying amicarbazone for annual bluegrass (Poa annua L.) control in cool-season turfgrasses may wish to reseed into treated areas. Field experiments were conducted in Georgia and Tennessee to investigate perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) reseeding intervals after amicarbazone applications. Perennial ryegrass and tall fescue cover were reduced similarly (less than 10% from the untreated) by all herbicides applied 2, 4, or 6 weeks before seeding. Bispyribac-sodium at 0.1 kg a.i./ha reduced tall fescue and perennial ryegrass cover more than amicarbazone at 0.1 or 0.2 kg a.i./ha when applied the day of seeding. Applied on the day of seeding in Georgia, amicarbazone at 0.4 kg·ha−1 reduced turf cover of each species similar to bispyribac-sodium; however, this response was not observed in Tennessee. Results suggest tall fescue and perennial ryegrass can be safely seeded the day of amicarbazone applications at 0.1 or 0.2 kg·ha−1, but practitioners may need to wait 2 weeks before seeding these turfgrasses into areas treated with amicarbazone at 0.4 kg·ha−1 or bispyribac-sodium at 0.1 kg a.i./ha.


Sign in / Sign up

Export Citation Format

Share Document