scholarly journals Phase-field modeling of fracture in heterogeneous materials: jump conditions, convergence and crack propagation

Author(s):  
Arne Claus Hansen-Dörr ◽  
Jörg Brummund ◽  
Markus Kästner

Abstract In this contribution, a variational diffuse modeling framework for cracks in heterogeneous media is presented. A static order parameter smoothly bridges the discontinuity at material interfaces, while an evolving phase-field captures the regularized crack. The key novelty is the combination of a strain energy split with a partial rank-I relaxation in the vicinity of the diffuse interface. The former is necessary to account for physically meaningful crack kinematics like crack closure, the latter ensures the mechanical jump conditions throughout the diffuse region. The model is verified by a convergence study, where a circular bi-material disc with and without a crack is subjected to radial loads. For the uncracked case, analytical solutions are taken as reference. In a second step, the model is applied to crack propagation, where a meaningful influence on crack branching is observed, that underlines the necessity of a reasonable homogenization scheme. The presented model is particularly relevant for the combination of any variational strain energy split in the fracture phase-field model with a diffuse modeling approach for material heterogeneities.

2014 ◽  
Vol 24 (13) ◽  
pp. 2569-2599 ◽  
Author(s):  
E. A. B. F. Lima ◽  
J. T. Oden ◽  
R. C. Almeida

The development of predictive computational models of tumor initiation, growth, and decline is faced with many formidable challenges. Phenomenological models which attempt to capture the complex interactions of multiple tissue and cellular species must cope with moving interfaces of heterogeneous media and the sprouting vascular structures due to angiogenesis and their evolution. They must be able to deliver predictions consistent with events that take place at cellular scales, and they must faithfully depict biological mechanisms and events that are known to be associated with various forms of cancer. In the present work, a ten-species vascular model for the tumor growth is presented which falls within the framework of phase-field (or diffuse-interface) models suggested by continuum mixture theory. This framework provides for the simultaneous treatment of interactions of multiple evolving species, such as tumor cells, necrotic cell cores, nutrients, and other cellular and tissue types that exist and interact in living tissue. We develop a hybrid model that couples the tumor growth with sprouting through angiogenesis. The model is able to represent the branching of new vessels through coupling a discrete model for which the angiogenesis is started upon pre-defined conditions on the nutrient deprivation in the continuum model. Such conditions are represented by hypoxic cells that release tumor growth factors that ultimately trigger vascular growth. We discuss the numerical approximation of the model using mixed finite elements. The results of numerical experiments are also presented and discussed.


2020 ◽  
pp. 2000162
Author(s):  
Chao Yang ◽  
Houbing Huang ◽  
Wenbo Liu ◽  
Junsheng Wang ◽  
Jing Wang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4430 ◽  
Author(s):  
Jingming Zhu ◽  
Jun Luo ◽  
Yuanzun Sun

The superior fracture toughness of zirconia is closely correlated with stress-induced martensitic phase transformation around a crack tip. In this study, a modified phase field (PF) model coupling phase transformation and fracture is proposed to study the fracture behavior and toughening effect of tetragonal zirconia polycrystal (TZP). The stress-induced tetragonal to monoclinic (t–m) phase transformation around a static or propagating crack is characterized with PF simulations. It is shown that the finite size and shape of the transformation zone under different loads and ambient temperatures can be well predicted with the proposed PF model. The phase transformation may decrease the stress level around the crack tip, which implies the toughening effect. After that, crack propagation in TZP is studied. As the stress field is perturbed by the phase transformation patterns, the crack may experience deflection and branching in the propagation process. It is found that the toughness of the grain boundaries (GBs) has important influences on the crack propagation mode. For TZP with strong GBs, the crack is more likely to propagate transgranularly while, for TZP with weak GBs, intergranular crack propagation is prevalent. Besides that, the crystal orientation and the external load can also influence the topology of crack propagation.


Author(s):  
Naoki Takada

For interface-tracking simulation of two-phase flows in various micro-fluidics devices, the applicability of two versions of Navier-Stokes phase-field method (NS-PFM) was examined, combining NS equations for a continuous fluid with a diffuse-interface model based on the van der Waals-Cahn-Hilliard free-energy theory. Through the numerical simulations, the following major findings were obtained: (1) The first version of NS-PFM gives good predictions of interfacial shapes and motions in an incompressible, isothermal two-phase fluid with high density ratio on solid surface with heterogeneous wettability. (2) The second version successfully captures liquid-vapor motions with heat and mass transfer across interfaces in phase change of a non-ideal fluid around the critical point.


Author(s):  
T. Philippe ◽  
H. Henry ◽  
M. Plapp

At equilibrium, the shape of a strongly anisotropic crystal exhibits corners when for some orientations the surface stiffness is negative. In the sharp-interface problem, the surface free energy is traditionally augmented with a curvature-dependent term in order to round the corners and regularize the dynamic equations that describe the motion of such interfaces. In this paper, we adopt a diffuse interface description and present a phase-field model for strongly anisotropic crystals that is regularized using an approximation of the Willmore energy. The Allen–Cahn equation is employed to model kinetically controlled crystal growth. Using the method of matched asymptotic expansions, it is shown that the model converges to the sharp-interface theory proposed by Herring. Then, the stress tensor is used to derive the force acting on the diffuse interface and to examine the properties of a corner at equilibrium. Finally, the coarsening dynamics of the faceting instability during growth is investigated. Phase-field simulations reveal the existence of a parabolic regime, with the mean facet length evolving in t , with t the time, as predicted by the sharp-interface theory. A specific coarsening mechanism is observed: a hill disappears as the two neighbouring valleys merge.


Author(s):  
Rakesh Dhote ◽  
Kamran Behdinan

In this paper, we study the dynamic thermo-mechanical behaviors of 3D shape memory alloy (SMA) nanostructures using the phase-field (PF) model. The PF model is based on the Ginzburg-Landau theory and requires a non-convex free energy function for an adequate description of the cubic-to-tetragonal martensitic phase transformations. We have developed a model that includes domain walls, treated as a diffuse interface, which leads to a fourth-order differential equation in a strain-based order parameter PF model. Arising numerical challenges have been overcome based on an isogeometric analysis (IGA) framework. Microstructure morphology evolution and consequent thermo-mechanical properties have been studied on SMA nanostructures of different geometries. The numerical results are in agreement with experimental observations. The developed coupled dynamic model has provided a better understanding of underlying microstructures and behaviors, which can be used for development of better SMA-based devices.


2015 ◽  
Vol 55 (5) ◽  
pp. 887-901 ◽  
Author(s):  
Daniel Schneider ◽  
Oleg Tschukin ◽  
Abhik Choudhury ◽  
Michael Selzer ◽  
Thomas Böhlke ◽  
...  

PAMM ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 117-118
Author(s):  
Martina Hofacker ◽  
Christian Miehe ◽  
Fabian Welschinger

2016 ◽  
Vol 8 ◽  
pp. 9-18
Author(s):  
Jie Liao

A phase field model for binary alloy solidification with boundary interface intersection is developed. In the phase field model, the heat and solute conservation equations are appropriately modified to account for the presence of heat and solute rejection inside the diffuse interface, and a relaxation boundary condition for the phase field variable is introduced to balance the interface energy and boundary surface energy in the multiphase contact region. The thin interface asymptotic analysis is applied on the phase field model to yield the free interface problem with dynamic contact point condition.


Sign in / Sign up

Export Citation Format

Share Document