Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex

2002 ◽  
Vol 86 (5) ◽  
pp. 428-434 ◽  
Author(s):  
Andrew Cornwell ◽  
Arnold Nelson ◽  
Ben Sidaway
2021 ◽  
pp. 766-777
Author(s):  
Jeffrey M. McBride

The current investigation examined muscle-tendon unit kinematics and kinetics in human participants asked to perform a hopping task for maximal performance with variational preceding milieu. Twenty-four participants were allocated post-data collection into those participants with an average hop height of higher (HH) or lower (LH) than 0.1 m. Participants were placed on a customized sled at a 20º angle while standing on a force plate. Participants used their dominant ankle for all testing and their knee was immobilized and thus all movement involved only the ankle joint and corresponding propulsive unit (triceps surae muscle complex). Participants were asked to perform a maximal effort during a single dynamic countermovement hop (CMH) and drop hops from 10 cm (DH10) and 50 cm (DH50). Three-dimensional motion analysis was performed by utilizing an infrared camera VICON motion analysis system and a corresponding force plate. An ultrasound probe was placed on the triceps surae muscle complex for muscle fascicle imaging. HH hopped significantly higher in all hopping tasks in comparison to LH. In addition, the HH group concentric ankle work was significantly higher in comparison to LH during all of the hopping tasks. Active muscle work was significantly higher in HH in comparison to LH as well. Tendon work was not significantly different between HH and LH. Active muscle work was significantly correlated with hopping height (r = 0.97) across both groups and hopping tasks and contributed more than 50% of the total work. The data indicates that humans primarily use a motor-driven system and thus it is concluded that muscle actuators and not springs maximize performance in hopping locomotor tasks in humans.


2011 ◽  
Vol 3 (6) ◽  
pp. 543-546 ◽  
Author(s):  
Michael Mullaney ◽  
Timothy F. Tyler ◽  
Malachy McHugh ◽  
Karl Orishimo ◽  
Ian Kremenic ◽  
...  

Background: Specific guidelines for therapeutic exercises following an Achilles tendon repair are lacking. Hypothesis: A hierarchical progression of triceps surae exercises can be determined on the basis of electromyographic (EMG) activity. Study Design: Randomized laboratory trial. Methods: Bipolar surface electrodes were applied over the medial and lateral heads of the gastrocnemius as well as the soleus on 20 healthy lower extremities (10 participants, 27 ± 5 years old). Muscle activity was recorded during 8 therapeutic exercises commonly used following an Achilles repair. Maximal voluntary isometric contractions (MVICs) were also performed on an isokinetic device. The effect of exercise on EMG activity (% MVIC) was assessed using repeated measures analysis of variance with Bonferroni corrections for planned pairwise comparisons. Results: Seated toe raises (11% MVIC) had the least amount of activity compared with all other exercises ( P < 0.01), followed by single-leg balance on wobble board (25% MVIC), prone ankle pumps (38% MVIC), supine plantarflexion with red elastic resistance (45% MVIC), normal gait (47% MVIC), lateral step-ups (60% MVIC), single-leg heel raises (112% MVIC), and single-leg jumping (129% MVIC). Conclusion: There is an increasing progression of EMG activity for exercises that target the triceps surae muscle complex during common exercises prescribed in an Achilles tendon rehabilitation program. Seated toe raises offer relatively low EMG activity and can be utilized as an early rehabilitative exercise. In contrast, the single-leg heel raise and single-leg jumping should be utilized only during later-stage rehabilitation. Clinical Relevance: EMG activity in the triceps surae is variable with common rehab exercises.


Author(s):  
Yung-Sheng Chen ◽  
Shi Zhou ◽  
Zachary J. Crowley-McHattan ◽  
Pedro Bezerra ◽  
Wei-Chin Tseng ◽  
...  

This study examined the acute effects of stretch tensions of kinesiology taping (KT) on the soleus (SOL), medial (MG), and lateral (LG) gastrocnemius Hoffmann-reflex (H-reflex) modulation in physically active healthy adults. A cross-over within-subject design was used in this study. Twelve physically active collegiate students voluntarily participated in the study (age = 21.3 ± 1.2 years; height = 175.6 ± 7.1 cm; body weight = 69.9 ± 7.1 kg). A standard Y-shape of KT technique was applied to the calf muscles. The KT was controlled in three tension intensities in a randomised order: paper-off, 50%, and 100% of maximal stretch tension of the tape. The peak-to-peak amplitude of maximal M-wave (Mmax) and H-reflex (Hmax) responses in the SOL, MG, and LG muscles were assessed before taping (pre-taping), taping, and after taping (post-taping) phases in the lying prone position. The results demonstrated significantly larger LG Hmax responses in the pre-taping condition than those in the post-taping condition during paper-off KT (p = 0.002). Moreover, the ΔHmax/Mmax of pre- and post-taping in the SOL muscle was significantly larger during 50%KT tension than that of paper-off (p = 0.046). In conclusion, the stretch tension of KT contributes minor influence on the spinal motoneuron excitability in the triceps surae during rest.


Author(s):  
G.R. González Toledo ◽  
H. Pérez Pérez ◽  
L. Brage Martín ◽  
V. Castro López-Tarruella

2013 ◽  
Vol 48 (4) ◽  
pp. 477-482 ◽  
Author(s):  
David O. Draper ◽  
Amanda R. Hawkes ◽  
A. Wayne Johnson ◽  
Mike T. Diede ◽  
Justin H. Rigby

Context: A new continuous diathermy called ReBound recently has been introduced. Its effectiveness as a heating modality is unknown. Objective: To compare the effects of the ReBound diathermy with an established deep-heating diathermy, the Megapulse II pulsed shortwave diathermy, on tissue temperature in the human triceps surae muscle. Design:  Crossover study. Setting: University research laboratory. Patients or Other Participants: Participants included 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). Intervention(s):  Each modality treatment was applied to the triceps surae muscle group of each participant for 30 minutes. After 30 minutes, we removed the modality and recorded temperature decay for 20 minutes. Main Outcome Measure(s): We horizontally inserted an implantable thermocouple into the medial triceps surae muscle to measure intramuscular tissue temperature at 3 cm deep. We measured temperature every 5 minutes during the 30-minute treatment and each minute during the 20-minute temperature decay. Results: Tissue temperature at a depth of 3 cm increased more with Megapulse II than with ReBound diathermy over the course of the treatment (F6,66 = 10.78, P &lt; .001). ReBound diathermy did not produce as much intramuscular heating, leading to a slower heat dissipation rate than the Megapulse II (F20,220 = 28.84, P &lt; .001). Conclusions:  During a 30-minute treatment, the Megapulse II was more effective than ReBound diathermy at increasing deep, intramuscular tissue temperature of the triceps surae muscle group.


Sign in / Sign up

Export Citation Format

Share Document