maximal effort
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 61)

H-INDEX

30
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 376
Author(s):  
Cornelis J. de Ruiter ◽  
Erik Wilmes ◽  
Pepijn S. van Ardenne ◽  
Niels Houtkamp ◽  
Reinder A. Prince ◽  
...  

Inertial measurement units (IMUs) fixed to the lower limbs have been reported to provide accurate estimates of stride lengths (SLs) during walking. Due to technical challenges, validation of such estimates in running is generally limited to speeds (well) below 5 m·s−1. However, athletes sprinting at (sub)maximal effort already surpass 5 m·s−1 after a few strides. The present study aimed to develop and validate IMU-derived SLs during maximal linear overground sprints. Recreational athletes (n = 21) completed two sets of three 35 m sprints executed at 60, 80, and 100% of subjective effort, with an IMU on the instep of each shoe. Reference SLs from start to ~30 m were obtained with a series of video cameras. SLs from IMUs were obtained by double integration of horizontal acceleration with a zero-velocity update, corrected for acceleration artefacts at touch-down of the feet. Peak sprint speeds (mean ± SD) reached at the three levels of effort were 7.02 ± 0.80, 7.65 ± 0.77, and 8.42 ± 0.85 m·s−1, respectively. Biases (±Limits of Agreement) of SLs obtained from all participants during sprints at 60, 80, and 100% effort were 0.01% (±6.33%), −0.75% (±6.39%), and −2.51% (±8.54%), respectively. In conclusion, in recreational athletes wearing IMUs tightly fixed to their shoes, stride length can be estimated with reasonable accuracy during maximal linear sprint acceleration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ritva S. Taipale-Mikkonen ◽  
Anna Raitanen ◽  
Anthony C. Hackney ◽  
Guro Strøm Solli ◽  
Maarit Valtonen ◽  
...  

Purpose: To examine the influence of menstrual cycle (MC) and hormonal contraceptive (HC) cycle phases on physiological variables monitored during incremental treadmill testing in physically active women (eumenorrheic, EUM = 16 and monophasic HC-users, CHC = 12).Methods: Four running tests to exhaustion were performed at bleeding, mid follicular (mid FOL)/active 1, ovulation/active 2, and mid luteal (mid LUT)/inactive. HC and MC phases were confirmed from serum hormones. Heart rate (HR), blood lactate (Bla), and V˙O2 were monitored, while aerobic (AerT) and anaerobic (AnaT) thresholds were determined. V˙O2peak, maximal running speed (RUNpeak), and total running time (RUNtotal) were recorded.Results: No significant changes were observed in V˙O2 or Bla at AerT or AnaT across phases in either group. At maximal effort, absolute and relative V˙O2peak, RUNpeak, and RUNtotal remained stable across phases in both groups. No significant fluctuations in HRmax were observed across phases, but HR at both AerT and AnaT tended to be lower in EUM than in CHC across phases.Conclusion: Hormonal fluctuations over the MC and HC do not systematically influence physiological variables monitored during incremental treadmill testing. Between group differences in HR at AerT and AnaT underline why HR-based training should be prescribed individually, while recording of MC or HC use when testing should be encouraged as phase may explain minor, but possibly meaningful, changes in, e.g., Bla concentrations or differences in HR response.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260297
Author(s):  
Jørund Løken ◽  
Tom Erik Jorung Solstad ◽  
Nicolay Stien ◽  
Vidar Andersen ◽  
Atle Hole Saeterbakken

Bench press is a popular training-exercise in throw related sports such as javelin, baseball and handball. Athletes in these sports often use bouncing (i.e., letting the barbell collide with the chest) to create an increased momentum to accelerate the barbell upwards before completing the movement by throwing the barbell. Importantly, the effects of the bouncing technique in bench press have not been examined. Therefore, the aim of this study was to compare the effects of bench press throw with (BPTbounce) or without bounce (BPT) on throwing velocity (penalty and 3-step), 1-repetition maximum (1-RM) and average power output (20-60kg) in bench press among handball players. Sixteen male amateur handball players (7.1±1.9 years of handball experience) were randomly allocated to an eight-week supplementary power training program (2 x week-1) with either the BPT or BPTbounce. Except for the bounce technique, the training programs were identical and consisted of 3 sets with 3–5 repetitions at 40–60% of 1-RM with maximal effort in free-weight barbell bench press throw. The results revealed no significant differences between the groups in any of the tests (p = 0.109–0.957). However, both groups improved penalty throw (BPT; 4.6%, p<0.001, ES = 0.57; BPTbounce; 5.1%, p = 0.008, ES = 0.91) and 1-RM (BPT; 9.7%, p<0.001, ES = 0.49; BPTbounce; 8.7%, p = 0.018, ES = 0.60), but only the BPT improved the 3-step throw (BPT; 2.9%, p = 0.060, ES = 0.38; BPTbounce; 2.3%, p = 0.216, ES = 0.40). The BPT improved power output only at 20kg and 30kg loads (9.1% and 12.7%; p = 0.018–0.048, ES = 0.43–0.51) whereas BPTbounce demonstrated no significant differences across the loads (p = 0.252–0.806). In conclusion, the bounce technique demonstrated similar effects on throwing velocity, muscle strength and muscle power output as conventional bench press throw without the bounce technique.


2021 ◽  
Vol 3 (122) ◽  
pp. 42-58
Author(s):  
Antoine Jolicoeur Desroches ◽  
Frédéric Domingue ◽  
Louis Laurencelle ◽  
Claude Lajoie

This study aimed to determine the effects of consuming a high fat solution (HFS) compared to a high carbohydrate solution (HCS) during a cycling effort on substrate oxidation, muscle oxygenation and performance with cyclists and triathletes. Thirteen men participated in this study (age: 30.4 ± 6.3 y; height: 178.7 ± 6.1 cm; weight: 74.9 ± 6.5 kg; V̇O2 peak: 60.5 ± 7.9 mlO2×kg-1×min-1). The solutions were isocaloric (total of 720 kcal) and were consumed every 20 minutes. Each solution of HFS contained 12.78 g of lipids, 1.33 g of carbohydrates and 0.67 g of proteins, and each solution of HCS contained 28 g of carbohydrates. We measured pulmonary oxygen consumption and skeletal muscle oxygenation, using a Near Infrared Spectrometer (NIRS) during a cycling effort consisting of 2 hours at 65 % of maximal aerobic power (MAP) followed immediately by a 3-minute time-trial (TT). We observed that the consumption of the HFS increased the rate of fat oxidation at the end of the sub-maximal effort (0.61 ± 0.14 vs 0.53 ± 0.17 g×min-1, p < 0.05). We have also shown that the HFS negatively affected the performance in the TT (mean Watts: HCS: 347.0 ± 77.4 vs HFS: 326.5 ± 88.8 W; p < 0.05) and the rating of perceived exertions during the sub-maximal effort (modified Borg Perceived Exertion scale: 1–10) (mean: 3.62 ± 0.58 for HCS vs 4.16 ± 0.62 for HFS; p < 0.05). We did not observe a significant effect of the acute consumption of the HFS compared to the HCS on muscle oxygenation during the cycling effort. Finally, we observed that cyclists who demonstrated a high skeletal muscle deoxygenation relative to their pulmonary oxygen consumption (DHHb/V̇O2) had a higher fat oxidation capacity (higher Fatmax). In conclusion, even though the consumption of HFS increased the rate of fat oxidation at the end of a sub-maximal effort, it did not affect muscle oxygenation and it negatively affected performance and perceived exertion during a time-trial and caused gastro-intestinal distress in some participants. Keywords: Fat oxidation, Skeletal muscle oxygenation, Lipid supplementation, Carbohydrate supplementation, Near Infrared Spectroscopy (NIRS), Cycling, Triathlon.


Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Guro Bostad ◽  
Øyvind Sandbakk

Abstract Purpose The purpose of this study was to examine the effect of pole length on performance and technique selection during a simulated skating cross-country (XC) skiing competition on snow in female XC skiers. Methods Nine female XC skiers and biathletes (VO2max 63.6 ± 6.2 mL/min/kg, age 22.9 ± 3.5 years, body height 1.69 ± 0.1 m and body mass 60.8 ± 4.6 kg) completed two 5-km skating time-trail with maximal effort. The athletes had a minimum 4.5 h of rest between the two races, which were performed in a random order: one with self-selected poles (89.0% ± 0.6% of body height) and one with 7.5 cm increased pole length (94.0% ± 0.5% of body height). Speed in set terrain sections was determined and the selection of sub-technique was self-reported immediately after each race based on a detailed review of the entire track. Results Skiers performed on average 7.1 ± 7.1 s (P = 0.029) faster with the long poles, with this difference occurring during the first 200 m and in the uphill parts of the track, in which ~ 5% more G3 and ~ 5% fewer G2 sub-techniques were chosen (both P < 0.05). The rating of perceived exertion was 1 ± 0.9 point lower (P = 0.04) and skiing technique was perceived to be ~ 1.2 ± 1.5 points better with long poles (P = 0.038), while the physiological responses (i.e., peak and average heart rate, and blood lactate concentration) did not differ between trials. Conclusion In conclusion, poles 7.5 cm longer than self-selected ones improved performance in skating, by enhancing speed in the initial phase (first 200 m) and in the uphill section of the track. In addition, the longer poles induced more use of the G3 skating sub-technique.


Sports ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 140
Author(s):  
Arthur E. Lynch ◽  
Robert W. Davies ◽  
Philip M. Jakeman ◽  
Tim Locke ◽  
Joanna M. Allardyce ◽  
...  

This study aimed to investigate the test-retest reliability of peak force in the isometric squat across the strength spectrum using coefficient of variation (CV) and intra-class correlation coefficient (ICC). On two separate days, 59 healthy men (mean (SD) age 23.0 (4.1) years; height 1.79 (0.7) m; body mass 84.0 (15.2) kg) performed three maximal effort isometric squats in two positions (at a 120° and a 90° knee angle). Acceptable reliability was observed at both the 120° (CV = 7.5 (6.7), ICC = 0.960 [0.933, 0.977]) and 90° positions (CV = 9.2 (8.8), ICC = 0.920 [0.865, 0.953]). There was no relationship between peak force in the isometric squat and the test-retest reliability at either the 120° (r = 0.052, p = 0.327) or 90° (r = 0.014, p = 0.613) positions. A subgroup of subjects (n = 17) also completed the isometric squat test at a 65° knee angle. Acceptable reliability was observed in this position (CV = 9.6 (9.3), ICC = 0.916 [0.766, 0.970]) and reliability was comparable to the 120° and 90° positions. Therefore, we deem isometric squat peak force output to be a valid and reliable measure across the strength spectrum and in different isometric squat positions.


2021 ◽  
pp. 766-777
Author(s):  
Jeffrey M. McBride

The current investigation examined muscle-tendon unit kinematics and kinetics in human participants asked to perform a hopping task for maximal performance with variational preceding milieu. Twenty-four participants were allocated post-data collection into those participants with an average hop height of higher (HH) or lower (LH) than 0.1 m. Participants were placed on a customized sled at a 20º angle while standing on a force plate. Participants used their dominant ankle for all testing and their knee was immobilized and thus all movement involved only the ankle joint and corresponding propulsive unit (triceps surae muscle complex). Participants were asked to perform a maximal effort during a single dynamic countermovement hop (CMH) and drop hops from 10 cm (DH10) and 50 cm (DH50). Three-dimensional motion analysis was performed by utilizing an infrared camera VICON motion analysis system and a corresponding force plate. An ultrasound probe was placed on the triceps surae muscle complex for muscle fascicle imaging. HH hopped significantly higher in all hopping tasks in comparison to LH. In addition, the HH group concentric ankle work was significantly higher in comparison to LH during all of the hopping tasks. Active muscle work was significantly higher in HH in comparison to LH as well. Tendon work was not significantly different between HH and LH. Active muscle work was significantly correlated with hopping height (r = 0.97) across both groups and hopping tasks and contributed more than 50% of the total work. The data indicates that humans primarily use a motor-driven system and thus it is concluded that muscle actuators and not springs maximize performance in hopping locomotor tasks in humans.


2021 ◽  
Author(s):  
Mariana M. Reimberg ◽  
Raphael Ritti‐Dias ◽  
Jessyca P. Selman ◽  
Rebeca S. Scalco ◽  
Gustavo F. Wandalsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document