Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators

2008 ◽  
Vol 393 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Mohammed R. Moussavian ◽  
Jan E. Slotta ◽  
Otto Kollmar ◽  
Michael D. Menger ◽  
Gernot Gronow ◽  
...  
1976 ◽  
Vol 11 (4) ◽  
pp. 599-607 ◽  
Author(s):  
Rao V. Panganamala ◽  
Hari M. Sharma ◽  
Richard E. Heikkila ◽  
Jack C. Geer ◽  
David G. Cornwell

1993 ◽  
Vol 265 (3) ◽  
pp. F435-F439 ◽  
Author(s):  
N. Ueda ◽  
B. Guidet ◽  
S. V. Shah

Iron, presumably by participating in generation of hydroxyl radical or other oxidant species or initiation of lipid peroxidation, has been shown to play an important role in several models of tissue injury, including acute renal failure induced by the antibiotic gentamicin. However, the sources of iron remain unknown. Rat renal mitochondria incubated at 37 degrees C with gentamicin resulted in a time- (15-60 min) and a dose-dependent (0.01-5 mM) iron release as measured by formation of iron-bathophenanthroline sulfonate complex FeII-(BPS)3 [at 60 min, control: 1.2 +/- 0.1 nmol/mg protein, n = 7; gentamicin (5 mM): 5.1 +/- 0.4 nmol/mg protein, n = 7]. No formation of FeII(BPS)3 complex was detected in the absence of mitochondria or when incubations were carried out at 0 degrees C. Similar results were obtained when 2,2'-dipyridyl, another iron chelator, was used for measurement of iron release. On the basis on our previous study that gentamicin enhances generation of hydrogen peroxide by renal cortical mitochondria, we examined whether effect of gentamicin on iron release is mediated by hydrogen peroxide. Catalase (which decomposes hydrogen peroxide), but not heat-inactivated catalase, as well as pyruvate, a potent scavenger of hydrogen peroxide, prevented gentamicin-induced iron mobilization. Superoxide dismutase, a scavenger of superoxide anion, or hydroxyl radical scavengers (dimethylthiourea or sodium benzoate) had no effect. Taken together, the data with scavengers indicate that gentamicin-induced iron mobilization from mitochondria is mediated by hydrogen peroxide.


2019 ◽  
Vol 80 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Wen Cheng ◽  
Li Jiang ◽  
Xuejun Quan ◽  
Chen Cheng ◽  
Xiaoxue Huang ◽  
...  

Abstract The ozonation efficiency for removal of recalcitrant organic pollutants in alkaline wastewater is always low because of the presence of some hydroxyl radical scavengers. To solve this problem, the O3/Ca(OH)2 system was put forward, and p-nitrophenol (PNP) was chosen to explore the mechanism of this system. The effects of key operational parameters were studied respectively; the Ca(OH)2 dosage 3 g/L, ozone inlet flow rate 3.5 L/min, ozone concentration 65 mg/L, reactor pressure 0.25 MPa, and temperature 25 °C were obtained as the optimal operating conditions. After 60 min treatment, the organic matter mineralized completely, which was higher than the sum of the ozonation-alone process (55.63%) and the Ca(OH)2 process (3.53%). It suggests that the calcium hydroxide in the O3/Ca(OH)2 process possessed a paramount role in the removal of PNP. The liquid samples and the precipitated substances were analyzed by gas chromatography mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy; it was demonstrated that Ca(OH)2 could accelerate the generation of hydroxyl radical and simultaneously in situ separate partial intermediate products and CO32− ions through some precipitation reactions.


Sign in / Sign up

Export Citation Format

Share Document