in situ separation
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 3)

Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Qiuhong Xiang ◽  
Kunlun Yang ◽  
Ziwen Chen ◽  
Manman Li ◽  
Yuanqi Zhang ◽  
...  

In order to improve the production efficiency of volatile fatty acids (VFAs) by anaerobic fermentation of food waste and reduce the cost for the production of organic deicing salt (ODS), ceramic microfiltration (MF) membrane separation was applied in the conventional food waste fermenter to build an anaerobic membrane bioreactor (AnMBR). Results showed that the maximum VFA concentration in AnMBR was up to 55.37 g/L. Due to the fact that the MF membrane could realize in situ separation of VFAs, the recovery of VFAs could reach 95.0%; 66.6% higher than that of traditional fermentation reactors. After the application of the MF membrane, more than 20.0% of soluble COD, 40.0% of proteins, and 50.0% of polysaccharides were retained and more than 90.0% of VFAs could be transferred in a timely fashion in the AnMBR system. In addition, the enrichment effect of the MF membrane enhanced enzymatic activities such as protease, α-Glucosidase and acetate kinase, and increased the abundance of some important bacteria for organic acid generation such as Amphibacter, Peptoniphilus and Halomonas, which made a significant contribution to the yield of VFAs. After concentration, evaporation and crystallization, the melting efficiency of obtained ODS can reach more than 90.0% in chloride salts, which was 112.0% of commercial calcium magnesium acetate (CMA). When compared to chloride salts and CMA, ODS was more environmentally-friendly as it can reduce the corrosion of carbon steel and concrete significantly. This study created a new way of converting food waste into a high-value organic deicing agent, realizing the resource utilization of solid waste and reducing the production cost of organic deicing agents.


Author(s):  
Yang Chen ◽  
Xu Tang ◽  
Ya Li ◽  
Chang Liu ◽  
Yingping Zhuang ◽  
...  

Sophorolipids (SLs) are regarded as one of the most promising biosurfactants. However, high production costs are the main obstacle to extended SLs application. Semi-continuous fermentation, which is based on in-situ separation, is a promising technology for achieving high SLs productivity. In this study, the sedimentation mechanism of SLs was analyzed. The formation of a hydrophobic mixture of SLs and rapeseed oil was a key factor in sedimentation. And the hydrophobicity and density of the mixture determined SLs sedimentation rate. On this basis, ultrasonic enhanced sedimentation technology (UEST) was introduced, by which the sedimentation rates were increased by 46.9% to 485.4% with different ratio of rapeseed oil to SLs. UEST-assisted real-time in-situ separation and semi-continuous fermentation were performed. SLs productivity and yield were 2.15 g/L/h and 0.58 g/g, respectively, simultaneously the loss ratio of cells, glucose, and rapeseed oil were significantly reduced. This study provides the new horizon for optimization of the SLs fermentation process.


2021 ◽  
Vol 232 (8) ◽  
Author(s):  
Ding Han ◽  
Xingyi Wu ◽  
Rui Li ◽  
Xianqiang Tang ◽  
Shangbin Xiao ◽  
...  

AbstractRemediation of contaminated soil and sediment is important for improving the eco-environmental quality. Electro-kinetic remediation (EKR) is an environmentally friendly technology to migrate and remove pollutants from the soil and sediment matrix. This paper analyses the mechanism and performance of EKR of heavy metals, organic pollutants, and compound pollutants. Moreover, the effect of optimizing individual EKR through soil and sediment pre-treatment (adding acid/oxidant/co-solvent/surfactant, stirring, heating, etc.), electrode optimization (exchange electrode, anode approximation, electrode matrix, etc.), and applying multi-technology combination (electro-kinetic permeable reaction barrier/Fenton/ion, exchange membrane/ultrasonic/electrolyte enhancement, etc.) was evaluated. Factors including incomplete separation of pollutants, variation in physico-chemical properties and microstructure of soil/sediment, and difficulties in in situ practice have restrained the field application of EKR. To solve the above technical challenge, an integrated EKR technology based on pollutant in situ separation, followed by separated contaminant treatment, and subsequent valuable elements recovery is proposed.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 93
Author(s):  
Youngju Kal ◽  
Sangwon Cha

Paper spray ionization (PSI) is an extractive ambient ionization technique for mass spectrometry (MS), whereby a triangular paper tip serves as the sampling base and the electrospray tip. During PSI, analytes are extracted and transported to the edge of the paper tip by the applied spraying solvent. Analytes can be purified from a sample matrix and separated from each other by this transportation process. In this study, we investigated and utilized the analyte transportation process of PSI for the in situ separation and analysis of lipid mixtures. We found that differential transport of phosphatidylcholine (PC) and triacylglycerol (TAG), the two most abundant lipid classes in animals, occurred during PSI. We also found that the order in which these lipids moved strongly depended on how the spraying solvent was applied to the paper base. The more polar PC moved faster than the less polar TAG during PSI, when a polar solvent was slowly fed into a paper tip, whereas TAG was transported faster than PC when excess solvent was applied to the tip at once. In addition, we achieved a complete separation and detection of PC and TAG by slowly supplying a nonpolar solvent to a PSI tip.


2020 ◽  
Vol 246 ◽  
pp. 118995 ◽  
Author(s):  
Huaimin Wang ◽  
Guneet Kaur ◽  
Ming Ho To ◽  
Sophie L.K.W. Roelants ◽  
Raffel Dharma Patria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document