T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation

Planta ◽  
2013 ◽  
Vol 238 (6) ◽  
pp. 1025-1037 ◽  
Author(s):  
Rim Ghedira ◽  
Sylvie De Buck ◽  
Frédéric Van Ex ◽  
Geert Angenon ◽  
Ann Depicker
2004 ◽  
Vol 109 (7) ◽  
pp. 1512-1518 ◽  
Author(s):  
M. Labra ◽  
C. Vannini ◽  
F. Grassi ◽  
M. Bracale ◽  
M. Balsemin ◽  
...  

2006 ◽  
Vol 1 (2) ◽  
pp. 641-646 ◽  
Author(s):  
Xiuren Zhang ◽  
Rossana Henriques ◽  
Shih-Shun Lin ◽  
Qi-Wen Niu ◽  
Nam-Hai Chua

1998 ◽  
Vol 11 (11) ◽  
pp. 1136-1141 ◽  
Author(s):  
Jaesung Nam ◽  
Kirankumar S. Mysore ◽  
Stanton B. Gelvin

The Arabidopsis thaliana mutants uvh1 and rad5, originally identified as radiation hypersensitive, were reported to be deficient in T-DNA integration based on the relative efficiencies of stable transformation and T-DNA transfer. We reassessed these mutants for susceptibility to transformation by Agrobacterium tumefaciens. The mutant rad5 showed a significant reduction in the efficiency of transient as well as stable transformation, compared with its wild-type progenitor. These data indicate that rad5 is blocked at a step in the transformation process prior to T-DNA integration. We additionally found, using both an in vitro root inoculation and an in vivo flower bolt inoculation assay, that the mutant uvh1 is as susceptible to A. tumefaciens-mediated transformation as is its wild-type progenitor, C10.


2021 ◽  
Author(s):  
Lejon Kralemann ◽  
Sylvia de Pater ◽  
Hexi Shen ◽  
Susan Kloet ◽  
Robin van Schendel ◽  
...  

Abstract Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides T-DNA into the plants nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA’s 5’ end. Different from capture of the 3’ end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5’ attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5’-end blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5’ end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3’ capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant’s own DNA repair machineries to transform them.


2000 ◽  
Vol 13 (6) ◽  
pp. 658-665 ◽  
Author(s):  
Sylvie De Buck ◽  
Chris De Wilde ◽  
Marc Van Montagu ◽  
Ann Depicker

Using the Cre/lox recombination system, we analyzed the extent to which T-DNA transfer to the plant cell and T-DNA integration into the plant genome determine the transformation and cotransformation frequencies of Arabidopsis root cells. Without selection for transformation competence, the stable transformation frequency of shoots obtained after cocultivation and regeneration on nonselective medium is below 0.5%. T-DNA transfer and expression occur in 5% of the shoots, indicating that the T-DNA integrates in less than 10% of the transiently expressing plant cells. A limited fraction of root cells, predominantly located at the wounded sites and in the pericycle, are competent for interaction with agrobacteria and the uptake of a T-DNA, as demonstrated by histochemical GUS staining. When selection for transformation competence is applied, the picture is completely different. Then, approximately 50% of the transformants show transient expression of a second, nonselected T-DNA and almost 50% of these cotransferred T-DNAs are integrated into the plant genome. Our results indicate that both T-DNA transfer and T-DNA integration limit the transformation and cotransformation frequencies and that plant cell competence for transformation is based on these two factors.


Sign in / Sign up

Export Citation Format

Share Document