promoter trap
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Congying Wang ◽  
Shen Chen ◽  
Aiqing Feng ◽  
Jing Su ◽  
Wenjuan Wang ◽  
...  

Abstract Background The rice (Oryza sativa) gene Xa7 has been hypothesized to be a typical executor resistance gene against Xanthomonas oryzae pv. oryzae (Xoo), and has conferred durable resistance in the field for decades. Its identity and the molecular mechanisms underlying this resistance remain elusive. Results Here, we filled in gaps of genome in Xa7 mapping locus via BAC library construction, revealing the presence of a 100-kb non-collinear sequence in the line IRBB7 compared with Nipponbare reference genomes. Complementary transformation with sequentially overlapping subclones of the BACs demonstrated that Xa7 is an orphan gene, encoding a small novel protein distinct from any other resistance proteins reported. A 27-bp effector binding element (EBE) in the Xa7 promoter is essential for AvrXa7-inducing expression model. XA7 is anchored in the endoplasmic reticulum membrane and triggers programmed cell death in rice and tobacco (Nicotiana benthamiana). The Xa7 gene is absent in most cultivars, landraces, and wild rice accessions, but highly homologs of XA7 were identified in Leersia perrieri, the nearest outgroup of the genus Oryza. Conclusions Xa7 acts as a trap to perceive AvrXa7 via EBEAvrXa7 in its promoter, leading to the initiation of resistant reaction. Since EBEAvrXa7 is ubiquitous in promoter of rice susceptible gene SWEET14, the elevated expression of which is conducive to the proliferation of Xoo, that lends a great benefit for the Xoo strains retaining AvrXa7. As a result, varieties harboring Xa7 would show more durable resistance in the field. Xa7 alleles analysis suggests that the discovery of new resistance genes could be extended beyond wild rice, to include wild grasses such as Leersia species.


2021 ◽  
Author(s):  
Congying Wang ◽  
Shen Chen ◽  
Aiqing Feng ◽  
Jing Su ◽  
Wenjuan Wang ◽  
...  

Abstract BackgroundThe rice (Oryza sativa) gene Xa7 has been hypothesized to be a typical executor resistance gene against Xanthomonas oryzae pv. oryzae (Xoo), and has conferred durable resistance in the field for decades. Its identity and the molecular mechanisms underlying this resistance remain elusive.Results Here, we filled in gaps of genome in Xa7 mapping locus via BAC library construction, revealing the presence of a 100-kb non-collinear sequence in the line IRBB7 compared with Nipponbare reference genomes. Complementary transformation with sequentially overlapping subclones of the BACs demonstrated that Xa7 is an orphan gene, encoding a small novel protein distinct from any other resistance proteins reported. A 27-bp effector binding element (EBE) in the Xa7 promoter is essential for AvrXa7-inducing expression model. XA7 is anchored in the endoplasmic reticulum membrane and triggers programmed cell death in rice and tobacco (Nicotiana benthamiana). The Xa7 gene is absent in most cultivars, landraces and wild rice accessions, but highly homologs of XA7 were identified in Leersia perrieri, the nearest outgroup of the genus Oryza.ConclusionsXa7 acts as a trap to perceive AvrXa7 via EBEAvrXa7 in its promoter, leading to the initiation of resistant reaction. Since EBEAvrXa7 is ubiquitous in promoter of rice susceptible gene SWEET14, the elevated expression of which is conducive to the proliferation of Xoo, that lends a great benefit for the Xoo strains retaining AvrXa7. As a result, varieties harboring Xa7 would show more durable resistance in the field. Xa7 alleles analysis suggests that the discovery of new resistance genes need not be limited to wild rice, but could instead be extended to wild grass such as Leersia genus.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 125
Author(s):  
Yo-Han Yoo ◽  
Yu-Jin Kim ◽  
Sunok Moon ◽  
Yun-Shil Gho ◽  
Woo-Jong Hong ◽  
...  

Promoters are key components for the application of biotechnological techniques in crop plants. Reporter genes such as GUS or GFP have been used to test the activity of promoters for diverse applications. A huge number of T-DNAs carrying promoterless GUS near their right borders have been inserted into the rice genome, and 105,739 flanking sequence tags from rice lines with this T-DNA insertion have been identified, establishing potential promoter trap lines for 20,899 out of 55,986 genes in the rice genome. Anatomical meta-expression data and information on abiotic stress related to these promoter trap lines enable us to quickly identify new promoters associated with various expression patterns. In the present report, we introduce a strategy to identify new promoters in a very short period of time using a combination of meta-expression analysis and promoter trap lines.


2017 ◽  
Vol 107 (11) ◽  
pp. 1322-1330 ◽  
Author(s):  
Huan Jiang ◽  
Mengyi Jiang ◽  
Liuke Yang ◽  
Peiyan Yao ◽  
Lin Ma ◽  
...  

Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (24) ◽  
Author(s):  
Sivasundaram Karnan ◽  
Akinobu Ota ◽  
Yuko Konishi ◽  
Md Wahiduzzaman ◽  
Shinobu Tsuzuki ◽  
...  

2015 ◽  
Vol 25 (5) ◽  
pp. 349-361 ◽  
Author(s):  
Timothy Casselli ◽  
Troy Bankhead

The causative agent of Lyme disease, <i>Borrelia burgdorferi,</i> is an obligate parasite that requires either a tick vector or a mammalian host for survival. Identification of the bacterial genes that are specifically expressed during infection of the mammalian host could provide targets for novel therapeutics and vaccines. In vivo expression technology (IVET) is a reporter-based promoter trap system that utilizes selectable markers to identify promoters of bacterial host-specific genes. Using previously characterized genes for in vivo and in vitro selection, this study utilized an IVET system that allows for selection of <i>B. burgdorferi</i> sequences that act as active promoters only during murine infection. This promoter trap system was able to successfully distinguish active promoter sequences both in vivo and in vitro from control sequences and a library of cloned <i>B. burgdorferi</i> genomic fragments. However, a bottleneck effect during the experimental mouse infection limited the utility for genome-wide promoter screening. Overall, IVET was demonstrated as a tool for the identification of in vivo-induced promoter elements of <i>B. burgdorferi,</i> and the observed infection bottleneck apparent using a polyclonal infection pool provides insight into the dynamics of experimental infection with <i>B. burgdorferi.</i>


2015 ◽  
Vol 14 (1) ◽  
pp. 2750-2761 ◽  
Author(s):  
L.H. Zhao ◽  
Y.H. Zhao ◽  
H. Liang ◽  
T. Yun ◽  
X.J. Han ◽  
...  

2014 ◽  
Vol 33 (5) ◽  
pp. 1404-1412 ◽  
Author(s):  
Isha Sharma ◽  
Ramamurthy Srinivasan ◽  
Paramvir Singh Ahuja ◽  
Shripad Ramachandra Bhat ◽  
Yelam Sreenivasulu

Sign in / Sign up

Export Citation Format

Share Document