T-DNA integration in plants requires MRE11- or TDP2-mediated removal of the 5’ bound Agrobacterium protein VirD2

Author(s):  
Lejon Kralemann ◽  
Sylvia de Pater ◽  
Hexi Shen ◽  
Susan Kloet ◽  
Robin van Schendel ◽  
...  

Abstract Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides T-DNA into the plants nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA’s 5’ end. Different from capture of the 3’ end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5’ attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5’-end blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5’ end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3’ capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant’s own DNA repair machineries to transform them.

2015 ◽  
Vol 81 (6) ◽  
pp. 934-946 ◽  
Author(s):  
So-Yon Park ◽  
Zarir Vaghchhipawala ◽  
Balaji Vasudevan ◽  
Lan-Ying Lee ◽  
Yunjia Shen ◽  
...  

2013 ◽  
Vol 82 (4-5) ◽  
pp. 339-351 ◽  
Author(s):  
Qi Jia ◽  
Amke den Dulk-Ras ◽  
Hexi Shen ◽  
Paul J. J. Hooykaas ◽  
Sylvia de Pater

2021 ◽  
Author(s):  
Robin Öz ◽  
Jing L Wang ◽  
Raphael Guerois ◽  
Gaurav Goyal ◽  
Sriram KK ◽  
...  

Abstract We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.


2008 ◽  
Vol 36 (19) ◽  
pp. 6333-6342 ◽  
Author(s):  
Susumu Iiizumi ◽  
Aya Kurosawa ◽  
Sairei So ◽  
Yasuyuki Ishii ◽  
Yuichi Chikaraishi ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Jia ◽  
Paul Bundock ◽  
Paul J. J. Hooykaas ◽  
Sylvia de Pater

In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.


2021 ◽  
Author(s):  
Tien Van Vu ◽  
Duong Thi Hai Doan ◽  
Mil Thi Tran ◽  
Yeon Woo Sung ◽  
Young Jong Song ◽  
...  

Abstract Plant gene targeting (GT) can be utilized to precisely replace up to several kilobases of a plant genome. Recent studies using the powerful clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases significantly improved plant GT efficiency. However, GT for loci without associated selection markers is still inefficient. We previously utilized Lachnospiraceae bacterium Cas12a (LbCas12a) in combination with a replicon for tomato GT and obtained high GT efficiency with some selection markers. In this study, we optimize and advance our GT system by using a temperature-tolerant LbCas12a (ttLbCas12a) in combination with various crRNA forms and chemical treatments to suppress the canonical non-homologous end-joining pathway in tomato. Our work demonstrates the significance of the selection of gene scissors, the appropriate design and number of LbCas12a crRNAs, the use of chemical treatments, and the establishment of favorable experimental conditions for further enhancement of plant HDR to enable efficient GT in tomato.


2021 ◽  
Author(s):  
Tien Vu ◽  
Duong Doan ◽  
Mil Tran ◽  
Yeon Woo Sung ◽  
Young Jong Song ◽  
...  

Abstract Plant gene targeting (GT) can be utilized to precisely replace up to several kilobases of a plant genome. Recent studies using the powerful clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases significantly improved plant GT efficiency. However, GT for loci without associated selection markers is still inefficient. We previously utilized Lachnospiraceae bacterium Cas12a (LbCas12a) in combination with a replicon for tomato GT and obtained high GT efficiency with some selection markers. In this study, we customize and advance our GT system by using a temperature-tolerant LbCas12a (ttLbCas12a) in combination with various crRNA forms and chemical treatments to suppress the canonical non-homologous end-joining pathway in tomato. Our work demonstrates the significance of the selection of gene scissors, the appropriate design of LbCas12a gRNAs, the use of chemical treatments, and the establishment of favorable experimental conditions for further enhancement of plant HDR to enable efficient GT in tomato.


2018 ◽  
Author(s):  
John W. Warmenhoven ◽  
Nicholas T. Henthorn ◽  
Marios Sotiropoulos ◽  
Nickolay Korabel ◽  
Sergei Fedotov ◽  
...  

AbstractIn human cells, non-homologous end joining is the preferred process to repair radiation induced DNA double strand breaks. The complex nature of such biological systems involves many individual actions that combine to produce an overall behaviour. As such, experimentally determining the mechanisms involved, their individual roles, and how they interact is challenging. An in silico approach to radiobiology is uniquely suited for detailed exploration of these complex interactions and the unknown effects of specific mechanisms on overall behaviour. We detail the construction of a mechanistic model by combination of several, experimentally supported, hypothesised mechanisms. Compatibility of these mechanisms was tested by fitting to results reported in the literature. To avoid over fitting, individual mechanisms within this pathway were sequentially fitted. We demonstrate that using this approach the model is capable of reproducing published protein kinetics and overall repair trends. This process highlighted specific biological mechanisms which are not clearly defined experimentally, and showed that the assumed motion of individual double strand break ends plays a crucial role in determining overall system behaviour.


Sign in / Sign up

Export Citation Format

Share Document