TMS of the occipital face area modulates cross-domain identity priming

2018 ◽  
Vol 224 (1) ◽  
pp. 149-157 ◽  
Author(s):  
Géza Gergely Ambrus ◽  
Catarina Amado ◽  
Laura Krohn ◽  
Gyula Kovács
2009 ◽  
Vol 30 (4) ◽  
pp. 721-733 ◽  
Author(s):  
Gillian Rhodes ◽  
Patricia T. Michie ◽  
Matthew E. Hughes ◽  
Graham Byatt

2015 ◽  
Vol 29 (3) ◽  
pp. 409-416 ◽  
Author(s):  
Chiara Renzi ◽  
Chiara Ferrari ◽  
Susanna Schiavi ◽  
Alberto Pisoni ◽  
Costanza Papagno ◽  
...  

2019 ◽  
Vol 31 (10) ◽  
pp. 1573-1588 ◽  
Author(s):  
Eelke de Vries ◽  
Daniel Baldauf

We recorded magnetoencephalography using a neural entrainment paradigm with compound face stimuli that allowed for entraining the processing of various parts of a face (eyes, mouth) as well as changes in facial identity. Our magnetic response image-guided magnetoencephalography analyses revealed that different subnodes of the human face processing network were entrained differentially according to their functional specialization. Whereas the occipital face area was most responsive to the rate at which face parts (e.g., the mouth) changed, and face patches in the STS were mostly entrained by rhythmic changes in the eye region, the fusiform face area was the only subregion that was strongly entrained by the rhythmic changes in facial identity. Furthermore, top–down attention to the mouth, eyes, or identity of the face selectively modulated the neural processing in the respective area (i.e., occipital face area, STS, or fusiform face area), resembling behavioral cue validity effects observed in the participants' RT and detection rate data. Our results show the attentional weighting of the visual processing of different aspects and dimensions of a single face object, at various stages of the involved visual processing hierarchy.


2015 ◽  
Vol 35 (50) ◽  
pp. 16398-16403 ◽  
Author(s):  
T. C. Kietzmann ◽  
S. Poltoratski ◽  
P. Konig ◽  
R. Blake ◽  
F. Tong ◽  
...  

2014 ◽  
Vol 14 (10) ◽  
pp. 125-125
Author(s):  
T. C. Kietzmann ◽  
S. Ling ◽  
S. Poltoratski ◽  
P. Konig ◽  
R. Blake ◽  
...  

2016 ◽  
Author(s):  
J. Swaroop Guntupalli ◽  
Kelsey G. Wheeler ◽  
M. Ida Gobbini

AbstractNeural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for recognition of identity. Here, we report an fMRI neural decoding study in humans that shows that this pathway culminates in a right inferior frontal cortex face area (rIFFA) with a representation of individual identities that has been disentangled from variable visual features in different images of the same person. At earlier stages in the pathway, processing begins in early visual cortex and the occipital face area (OFA) with representations of head view that are invariant across identities, and proceeds to an intermediate level of representation in the fusiform face area (FFA) in which identity is emerging but still entangled with head view. Three-dimensional, view-invariant representation of identities in the rIFFA may be the critical link to the extended system for face perception, affording activation of person knowledge and emotional responses to familiar faces.Significance StatementIn this fMRI decoding experiment, we address how face images are processed in successive stages to disentangle the view-invariant representation of identity from variable visual features. Representations in early visual cortex and the occipital face area distinguish head views, invariant across identities. An intermediate level of representation in the fusiform face area distinguishes identities but still is entangled with head view. The face-processing pathway culminates in the right inferior frontal area with representation of view-independent identity. This paper clarifies the homologies between the human and macaque face processing systems. The findings show further, however, the importance of the inferior frontal cortex in decoding face identity, a result that has not yet been reported in the monkey literature.


2010 ◽  
Vol 8 (6) ◽  
pp. 402-402
Author(s):  
A.-S. Caldara ◽  
E. Mayer ◽  
R. Caldara

2018 ◽  
Vol 30 (7) ◽  
pp. 963-972 ◽  
Author(s):  
Andrew D. Engell ◽  
Na Yeon Kim ◽  
Gregory McCarthy

Perception of faces has been shown to engage a domain-specific set of brain regions, including the occipital face area (OFA) and the fusiform face area (FFA). It is commonly held that the OFA is responsible for the detection of faces in the environment, whereas the FFA is responsible for processing the identity of the face. However, an alternative model posits that the FFA is responsible for face detection and subsequently recruits the OFA to analyze the face parts in the service of identification. An essential prediction of the former model is that the OFA is not sensitive to the arrangement of internal face parts. In the current fMRI study, we test the sensitivity of the OFA and FFA to the configuration of face parts. Participants were shown faces in which the internal parts were presented in a typical configuration (two eyes above a nose above a mouth) or in an atypical configuration (the locations of individual parts were shuffled within the face outline). Perception of the atypical faces evoked a significantly larger response than typical faces in the OFA and in a wide swath of the surrounding posterior occipitotemporal cortices. Surprisingly, typical faces did not evoke a significantly larger response than atypical faces anywhere in the brain, including the FFA (although some subthreshold differences were observed). We propose that face processing in the FFA results in inhibitory sculpting of activation in the OFA, which accounts for this region's weaker response to typical than to atypical configurations.


2010 ◽  
Vol 22 (10) ◽  
pp. 2276-2288 ◽  
Author(s):  
Lisa R. Betts ◽  
Hugh R. Wilson

It is well established that the human visual system contains a distributed network of regions that are involved in processing faces, but our understanding of how faces are represented within these face-sensitive brain areas is incomplete. We used fMRI to investigate whether face-sensitive brain areas are solely tuned for whole faces, or whether they contain heterogeneous populations of neurons tuned to individual components of the face as well as whole faces, as suggested by physiological investigations in nonhuman primates. The middle fusiform gyrus (fusiform face area, or FFA) and the inferior occipital gyrus (occipital face area, or OFA) produced robust BOLD activation to synthetic whole face stimuli, but also to the internal facial features and head outlines. BOLD responses to whole face stimuli in FFA were significantly reduced after adaptation to whole faces, but not after adaptation to features or head outlines, whereas activation to head outlines was reduced after adaptation to both whole faces and head outlines. OFA showed no significant adaptation effects for matching adaptation and test conditions, but did exhibit cross-adaptation between whole faces and head outlines. The internal face features did not produce any significant adaptation within either FFA or OFA. Our results are consistent with a model in which independent populations of whole face-, feature-, and head outline-tuned neurons exist within face-sensitive regions of human occipito-temporal cortex, which in turn would support tasks such as viewpoint processing, emotion classification, and identity discrimination.


Sign in / Sign up

Export Citation Format

Share Document