holistic processing
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 55)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
pp. 174702182210768
Author(s):  
Amy Berger ◽  
Regan Fry ◽  
Anna Bobak ◽  
Angela Juliano ◽  
Joseph DeGutis

Previous face matching studies provide evidence that matching same identity faces (match trials) and discriminating different face identities (non-match trials) rely on distinct processes. For example, instructional studies geared towards improving face matching in applied settings have often found selective improvements in match or non-match trials only. Additionally, a small study found that developmental prosopagnosics (DPs) have specific deficits in making match but not non-match judgments. In the current study, we sought to replicate this finding in DPs and examine how individual differences across DPs and controls in match vs. non-match performance relate to featural vs. holistic processing abilities. 43 DPs and 27 controls matched face images shown from similar front views or with varied lighting or viewpoint. Participants also performed tasks measuring featural (eyes/mouth) and holistic processing (part-whole task). We found that DPs showed worse overall matching performance than controls and that their relative match vs. non-match deficit depended on image variation condition, indicating that DPs do not consistently show match- or non-match-specific deficits. When examining the association between holistic and featural processing abilities and match vs. non-match trials in the entire group of DPs and controls, we found a very clear dissociation: Match trials significantly correlated with eye processing ability (r=.48) but not holistic processing (r=.11), whereas non-match trials significantly correlated with holistic processing (r=.32) but not eye processing (r=.03). This suggests that matching same identity faces relies more on eye processing while discriminating different faces relies more on holistic processing.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259986
Author(s):  
Nuala Brady ◽  
Kate Darmody ◽  
Fiona N. Newell ◽  
Sarah M. Cooney

We compared the performance of dyslexic and typical readers on two perceptual tasks, the Vanderbilt Holistic Face Processing Task and the Holistic Word Processing Task. Both yield a metric of holistic processing that captures the extent to which participants automatically attend to information that is spatially nearby but irrelevant to the task at hand. Our results show, for the first time, that holistic processing of faces is comparable in dyslexic and typical readers but that dyslexic readers show greater holistic processing of words. Remarkably, we show that these metrics predict the performance of dyslexic readers on a standardized reading task, with more holistic processing in both tasks associated with higher accuracy and speed. In contrast, a more holistic style on the words task predicts less accurate reading of both words and pseudowords for typical readers. We discuss how these findings may guide our conceptualization of the visual deficit in dyslexia.


2021 ◽  
Author(s):  
◽  
Gates Henderson

<p>Face perception depends on a network of brain areas that selectively respond to faces over non-face stimuli. These face-selective areas are involved in different aspects of face perception, but what specific process is implemented in a particular region remains little understood. A candidate processisholistic face processing, namely the integration of visual information across the whole of an upright face. In this thesis, I report two experimentsthat examine whether the occipital face area (OFA), a face-selective region in the inferior occipital gyrus, performs holistic processing for categorising a stimulus as a face. Both experiments were conducted using online, repetitive transcranial magnetic stimulation (TMS) to disrupt activity in the brain while participants performed face perception tasks. Experiment 1 was a localiser in which participants completed two face identification tasks while receiving TMS at OFA or vertex. Participants’ accuracy decreased for one of the tasks as a result of OFA but not vertex stimulation. This result confirms that OFA could be localised and its activity disrupted. Experiment 2 was a test of holistic processing in which participants categorised ambiguous two-tone images as faces or non-faces while TMS was delivered to OFA or vertex. Participants’ accuracy and response times were unchanged as a result of either stimulation. This result suggests that the OFA is not engaged in holistic processing for categorising a stimulus as a face. Overall, the currentresults are more consistent with previous studies suggesting that OFA is involved in processing of local face features/details rather than the whole face.</p>


2021 ◽  
Author(s):  
◽  
Gates Henderson

<p>Face perception depends on a network of brain areas that selectively respond to faces over non-face stimuli. These face-selective areas are involved in different aspects of face perception, but what specific process is implemented in a particular region remains little understood. A candidate processisholistic face processing, namely the integration of visual information across the whole of an upright face. In this thesis, I report two experimentsthat examine whether the occipital face area (OFA), a face-selective region in the inferior occipital gyrus, performs holistic processing for categorising a stimulus as a face. Both experiments were conducted using online, repetitive transcranial magnetic stimulation (TMS) to disrupt activity in the brain while participants performed face perception tasks. Experiment 1 was a localiser in which participants completed two face identification tasks while receiving TMS at OFA or vertex. Participants’ accuracy decreased for one of the tasks as a result of OFA but not vertex stimulation. This result confirms that OFA could be localised and its activity disrupted. Experiment 2 was a test of holistic processing in which participants categorised ambiguous two-tone images as faces or non-faces while TMS was delivered to OFA or vertex. Participants’ accuracy and response times were unchanged as a result of either stimulation. This result suggests that the OFA is not engaged in holistic processing for categorising a stimulus as a face. Overall, the currentresults are more consistent with previous studies suggesting that OFA is involved in processing of local face features/details rather than the whole face.</p>


2021 ◽  
Vol 21 (9) ◽  
pp. 2555
Author(s):  
Yijun Li ◽  
Yu-Hao Sun ◽  
Lushuang Zhang ◽  
Weidong Zhang ◽  
Wenjing Deng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (9) ◽  
pp. 2588
Author(s):  
Xin Zhou ◽  
Yu-Hao Sun ◽  
Zhe Wang ◽  
Xiteng Yang

2021 ◽  
Author(s):  
Regan Fry ◽  
Jim Tanaka ◽  
Sarah Cohan ◽  
Jeremy Bennet Wilmer ◽  
Laura Germine ◽  
...  

While age-related decline in face recognition memory is well established, the degree of decline in face perceptual abilities across the lifespan and their underlying mechanisms are incompletely characterized. In the current study, using the part-whole task, we sought to examine how age relates to facial feature discrimination ability and holistic face processing in a large sample of 3,341 online participants aged 18-69 years. We evaluated performance on the part-whole eye and mouth trials and the magnitude of the part-whole holistic advantage across the lifespan. We found that while discrimination of the eye region decreased beginning in the 50s, both mouth discrimination accuracy and the magnitude of the holistic advantage were stable with age. When investigating gender differences, we found that age-related declines in eye region accuracy were more pronounced in men than women, but this was not true for mouth accuracy or holistic processing. We discuss potential mechanistic explanations for this eye region-specific aging effect, including age-related hearing loss and its potential relationship with the age-related positivity effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao-Chih Wang ◽  
Gary C.-W. Shyi ◽  
Peter Kuan-Hao Cheng

Background: Holistic processing is defined as the perceptual integration of facial features, and plays an important role in face recognition. While researchers recognize the crucial role played by holistic processing in face perception, a complete delineation of the underlying mechanisms is impending. Very few studies have examined the effects of perceptual discrimination and spatial perception on holistic processing. Hence, the present study aimed to examine the influence of perceptual discrimination and spatial perception on face recognition.Methods: We conducted two experiments by manipulating the perceptual discriminability of the target (the top-half faces) and non-target face (the bottom-half faces) parts in the composite-face task and examined how perceptual discriminability may affect holistic processing of faces.Results: The results of Experiment 1 illustrated that holistic processing was modulated by the perceptual discriminability of the face. Furthermore, differential patterns of perceptual discriminability with the target and non-target parts suggested that different mechanisms may be responsible for the influence of target and non-target parts on face perception. The results of Experiment 2 illustrated that holistic processing was modulated by spatial distance between two faces, implicating that feature-by-feature strategy might decrease the magnitude of holistic processing.Conclusion: The results of the present study suggest that holistic processing may lead to augmented perception effect exaggerating the differences between the two faces and may also be affected by the feature-by-feature strategy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256849
Author(s):  
Ellen M. Kok ◽  
Bettina Sorger ◽  
Koos van Geel ◽  
Andreas Gegenfurtner ◽  
Jeroen J. G. van Merriënboer ◽  
...  

Radiologists can visually detect abnormalities on radiographs within 2s, a process that resembles holistic visual processing of faces. Interestingly, there is empirical evidence using functional magnetic resonance imaging (fMRI) for the involvement of the right fusiform face area (FFA) in visual-expertise tasks such as radiological image interpretation. The speed by which stimuli (e.g., faces, abnormalities) are recognized is an important characteristic of holistic processing. However, evidence for the involvement of the right FFA in holistic processing in radiology comes mostly from short or artificial tasks in which the quick, ‘holistic’ mode of diagnostic processing is not contrasted with the slower ‘search-to-find’ mode. In our fMRI study, we hypothesized that the right FFA responds selectively to the ‘holistic’ mode of diagnostic processing and less so to the ‘search-to-find’ mode. Eleven laypeople and 17 radiologists in training diagnosed 66 radiographs in 2s each (holistic mode) and subsequently checked their diagnosis in an extended (10-s) period (search-to-find mode). During data analysis, we first identified individual regions of interest (ROIs) for the right FFA using a localizer task. Then we employed ROI-based ANOVAs and obtained tentative support for the hypothesis that the right FFA shows more activation for radiologists in training versus laypeople, in particular in the holistic mode (i.e., during 2s trials), and less so in the search-to-find mode (i.e., during 10-s trials). No significant correlation was found between diagnostic performance (diagnostic accuracy) and brain-activation level within the right FFA for both, short-presentation and long-presentation diagnostic trials. Our results provide tentative evidence from a diagnostic-reasoning task that the FFA supports the holistic processing of visual stimuli in participants’ expertise domain.


Sign in / Sign up

Export Citation Format

Share Document