Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus

2011 ◽  
Vol 110 (5) ◽  
pp. 1841-1847 ◽  
Author(s):  
Chandrashekhar D. Patil ◽  
Satish V. Patil ◽  
Bipinchandra K. Salunke ◽  
Rahul B. Salunkhe
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sunil Dhiman ◽  
Kavita Yadav ◽  
B. N. Acharya ◽  
Raj Kumar Ahirwar ◽  
D. Sukumaran

Abstract Background The direct toxicological impact of insecticides on vector mosquitoes has been well emphasized; however, behavioural responses such as excito-repellency and physical avoidance as a result of insecticide exposure have not been much studied. We have demonstrated the excito-repellency and behavioural avoidance in certain vector mosquito species on exposure to a slow-release insecticidal paint (SRIP) formulation in addition to direct toxicity. Methods A SRIP formulation developed by the Defence Research and Development Establishment, Gwalior, contains chlorpyriphos, deltamethrin and pyriproxyfen as active insecticides. Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquitoes were used to study the excito-repellency response of the formulation. The experiments were performed in a specially designed dual-choice exposure and escape chamber made of transparent polymethyl methacrylate. For the experiments, the SRIP formulation was applied undiluted at a rate of 8 m2 per kg on 15 cm2 metallic surfaces. Mosquitoes were introduced into the exposure chamber, and observations of the movement of mosquitoes into the escape chamber through the exit portal were taken at 1-min intervals for up to 30 min. Results The evaluated formulation displayed strong excito-repellency against all three tested vector mosquito species. Results showed that the ET50 (escape time 50%) for Ae. aegypti, An. stephensi and Cx. quinquefasciatus was 20.9 min, 14.5 min and 17.9 min for contact exposure (CE) respectively. Altogether in CE, the escape rates were stronger in An. stephensi mosquitoes at different time intervals compared to Ae. aegypti and Cx. quinquefasciatus mosquitoes. The probit analysis revealed that the determined ET did not deviate from linearity for both non-contact exposure (NCE) and placebo exposure (PE) (χ2 ≤ 7.9; p = 1.0) for Ae. aegypti mosquitoes and for NCE (χ2 = 8.3; p = 1.0) and PE (χ2 = 1.7; p = 1.0) treatments in Cx. quinquefasciatus. Mortality (24 h) was found to be statistically higher (F = 6.4; p = 0.02) in An. stephensi for CE but did not vary for NCE (p ≥ 0.3) and PE (p = 0.6) treatments among the tested mosquito species. Survival probability response suggested that all the three tested species displayed similar survival responses for similar exposures (χ2 ≤ 2.3; p ≥ 0.1). Conclusion The study demonstrates the toxicity and strong behavioural avoidance in known vector mosquito species on exposure to an insecticide-based paint formulation. The combination of insecticides in the present formulation will broaden the overall impact spectrum for protecting users from mosquito bites. The efficacy data generated in the study provide crucial information on the effectiveness of the tested formulation and could be useful in reducing the transmission intensity and disease risk in endemic countries.


2018 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Syed Zameer Ahmed Khader ◽  
Sidhra Syed Zameer Ahmed ◽  
Kisore Perundurai Venkatesh ◽  
Kamaraj Chinnaperumal ◽  
Sanjeeva Nayaka

2019 ◽  
Vol 98 (8) ◽  
pp. 893-896
Author(s):  
Svetlana A. Roslavtseva

Mosquito control is necessary to improve the epidemic and, consequently, the sanitary and hygienic situation in human settlements. At the same time, the safest and more environmentally friendly way of controlling is not the fight against adult mosquitoes, but the treatment of reservoirs with microbiological larvicides based on entomopathogenic, aerobic, spore-forming, saprophytic bacteria Bacillus thuringiensis (de Barjac) (Bti). A new serotype of the bacterium B. thuringiensis was found in Israel in the Negev desert. This serotype being more active against larvae of blood-sucking and non-blood-sucking mosquitoes and midges than previously known serotypes, was named israelensis. Bti endotoxin is a typical insecticide with intestinal type of action for different mosquito species. For example, Bti H14 is highly insecticidal to the larvae of Aedes aegypti and Ae. albopictus at very low concentrations. The parasporal body (endotoxin crystal), a crystalline protein consisted of four main polypeptides and two minor polypeptides, possesses of a larvicidal action. Larvicidal activity is associated with a synergistic effect in a combination of four polypeptides. The possibility of development of resistance to products based on Bti and Bacillus sphaericus in populations of mosquitoes (Culicidae) was investigated. The use of domestic microbiological formulations based on Bti («Baktitsid», «Larviol-pasta», and «Antinat») was shown an eradication the larvae of bloodsucking mosquitoes and midges to be possible and rational, since they are not generated resistant populations of mosquitoes. This is confirmed by more than 30 years of the use of such formulations.


2012 ◽  
Vol 111 (4) ◽  
pp. 1757-1769 ◽  
Author(s):  
Kadarkarai Murugan ◽  
Palanisamy Mahesh Kumar ◽  
Kalimuthu Kovendan ◽  
Duraisamy Amerasan ◽  
Jayapal Subrmaniam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document