Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition

Oecologia ◽  
2002 ◽  
Vol 130 (4) ◽  
pp. 626-636 ◽  
Author(s):  
Gary N. Ervin ◽  
Robert G. Wetzel
Oecologia ◽  
2021 ◽  
Author(s):  
Peter Dietrich ◽  
Simone Cesarz ◽  
Tao Liu ◽  
Christiane Roscher ◽  
Nico Eisenhauer

AbstractDiversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top–down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity–productivity relationship.


2020 ◽  
Author(s):  
Christian Ristok ◽  
Alexander Weinhold ◽  
Marcel Ciobanu ◽  
Yvonne Poeschl ◽  
Christiane Roscher ◽  
...  

Abstract Insect herbivory is a key process in ecosystem functioning. While theory predicts that plant diversity modulates herbivory, the mechanistic links remain unclear. We postulated that the plant metabolome mechanistically links plant diversity and herbivory. In autumn and in spring, we assessed aboveground herbivory rates and plant metabolomes of seven plant species in experimental plant communities varying in plant species and resource acquisition strategy diversity. In the same plots, we also measured plant individual biomass as well as soil microbial and nematode community composition. Herbivory rates decreased with increasing plant species richness. Path modelling revealed that plant species richness and community resource acquisition strategy affected soil community composition. In particular, changes in nematode community composition affected plant metabolomes and thereby herbivory rates. These results provide experimental evidence that soil community composition plays an important role in reducing herbivory rates with increasing plant diversity by changing plant metabolomes.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Andrea Diviaková ◽  
Slavomír Stašiov ◽  
Radovan Pondelík ◽  
Vladimír Pätoprstý ◽  
Milan Novikmec

In Central Europe, submontane grassland plant biodiversity is currently threatened by management intensification as well as by the cessation and abandonment of management activities (extensive grazing and mowing). Although the vegetation of Central European grasslands has been well described by phytosociological papers, there is still a need to improve our understanding of the effect of both management and environment on species richness and community composition. We studied submontane grassland communities in Central Slovakia. Our study showed that both environmental variables and management were important for shaping the submontane grassland species richness and floristic composition. Plant species richness showed a weak negative relationship with soil pH. When grassland management types were analyzed individually, the amount of phosphorus, nitrogen, pH, and altitude were all found to be significantly correlated with plant species richness or diversity. Management type and local environmental factors (i.e., incoming solar radiation) both determined community composition.


Wetlands ◽  
2009 ◽  
Vol 29 (1) ◽  
pp. 225-235 ◽  
Author(s):  
Peter J. Sharpe ◽  
Andrew H. Baldwin

2019 ◽  
Vol 107 (6) ◽  
pp. 2635-2649 ◽  
Author(s):  
Deborah Schäfer ◽  
Valentin H. Klaus ◽  
Till Kleinebecker ◽  
Runa S. Boeddinghaus ◽  
Judith Hinderling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document