scholarly journals Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in land‐use intensity, plant species richness and community composition

2019 ◽  
Vol 107 (6) ◽  
pp. 2635-2649 ◽  
Author(s):  
Deborah Schäfer ◽  
Valentin H. Klaus ◽  
Till Kleinebecker ◽  
Runa S. Boeddinghaus ◽  
Judith Hinderling ◽  
...  
2018 ◽  
Vol 24 (7) ◽  
pp. 2828-2840 ◽  
Author(s):  
Valentin H. Klaus ◽  
Till Kleinebecker ◽  
Verena Busch ◽  
Markus Fischer ◽  
Norbert Hölzel ◽  
...  

2008 ◽  
Vol 276 (1658) ◽  
pp. 903-909 ◽  
Author(s):  
D Kleijn ◽  
F Kohler ◽  
A Báldi ◽  
P Batáry ◽  
E.D Concepción ◽  
...  

Worldwide agriculture is one of the main drivers of biodiversity decline. Effective conservation strategies depend on the type of relationship between biodiversity and land-use intensity, but to date the shape of this relationship is unknown. We linked plant species richness with nitrogen (N) input as an indicator of land-use intensity on 130 grasslands and 141 arable fields in six European countries. Using Poisson regression, we found that plant species richness was significantly negatively related to N input on both field types after the effects of confounding environmental factors had been accounted for. Subsequent analyses showed that exponentially declining relationships provided a better fit than linear or unimodal relationships and that this was largely the result of the response of rare species (relative cover less than 1%). Our results indicate that conservation benefits are disproportionally more costly on high-intensity than on low-intensity farmland. For example, reducing N inputs from 75 to 0 and 400 to 60 kg ha −1  yr −1 resulted in about the same estimated species gain for arable plants. Conservation initiatives are most (cost-)effective if they are preferentially implemented in extensively farmed areas that still support high levels of biodiversity.


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150284 ◽  
Author(s):  
Vanessa Minden ◽  
Christoph Scherber ◽  
Miguel A. Cebrián Piqueras ◽  
Juliane Trinogga ◽  
Anastasia Trenkamp ◽  
...  

Ecosystems managed for production of biomass are often characterized by low biodiversity because management aims to optimize single ecosystem functions (i.e. yield) involving deliberate selection of species or cultivars. In consequence, considerable differences in observed plant species richness and productivity remain across systems, and the drivers of these differences have remained poorly resolved so far. In addition, it has remained unclear if species richness feeds back on ecosystem functions such as yield in real-world systems. Here, we establish N = 360 experimental plots across a broad range of managed ecosystems in several European countries, and use structural equation models to unravel potential drivers of plant species richness. We hypothesize that the relationships between productivity, total biomass and observed species richness are affected by management intensity, and that these effects differ between habitat types (dry grasslands, grasslands, and wetlands). We found that local management was an important driver of species richness across systems. Management caused system disturbance, resulting in reduced productivity yet enhanced total biomass. Plant species richness was directly and positively driven by management, with consistently negative effects of total biomass. Productivity effects on richness were positive, negative or neutral. Our study shows that management and total biomass drive plant species richness across real-world managed systems.


2008 ◽  
Vol 84 (3-4) ◽  
pp. 200-211 ◽  
Author(s):  
Lotten J. Johansson ◽  
Karin Hall ◽  
Honor C. Prentice ◽  
Margareta Ihse ◽  
Triin Reitalu ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Peter Dietrich ◽  
Simone Cesarz ◽  
Tao Liu ◽  
Christiane Roscher ◽  
Nico Eisenhauer

AbstractDiversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top–down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity–productivity relationship.


2020 ◽  
Author(s):  
Christian Ristok ◽  
Alexander Weinhold ◽  
Marcel Ciobanu ◽  
Yvonne Poeschl ◽  
Christiane Roscher ◽  
...  

Abstract Insect herbivory is a key process in ecosystem functioning. While theory predicts that plant diversity modulates herbivory, the mechanistic links remain unclear. We postulated that the plant metabolome mechanistically links plant diversity and herbivory. In autumn and in spring, we assessed aboveground herbivory rates and plant metabolomes of seven plant species in experimental plant communities varying in plant species and resource acquisition strategy diversity. In the same plots, we also measured plant individual biomass as well as soil microbial and nematode community composition. Herbivory rates decreased with increasing plant species richness. Path modelling revealed that plant species richness and community resource acquisition strategy affected soil community composition. In particular, changes in nematode community composition affected plant metabolomes and thereby herbivory rates. These results provide experimental evidence that soil community composition plays an important role in reducing herbivory rates with increasing plant diversity by changing plant metabolomes.


Author(s):  
Andreas Hemp ◽  
Corina Del Fabbro ◽  
Markus Fischer

AbstractOne of the few general patterns in ecology is the increase of species richness with area. However, factors driving species-area relationship (SAR) are under debate, and the role of human-induced changes has been overlooked so far. Furthermore, SAR studies in tropical regions, in particular in multilayered rain forests are scarce. On the other side, studies of global change-induced impacts on biodiversity have become increasingly important, particular in the tropics, where these impacts are especially pronounced. Here, we investigated if area modulates the effect of land use, elevation and canopy on plant species richness. For the first time we studied SAR in multilayered tropical forests considering all functional groups. We selected 13 natural and disturbed habitats on Kilimanjaro in Tanzania, distributed over an elevational range of 3700 m. In each habitat type, we set up three to six modified Whittaker plots. We recorded all plant species in 64 plots and 640 subplots and described SAR using the power function. Area consistently modulated effects of elevation on plant species richness, partly effects of land use but not effects of plant canopy. Thus, area needs to be taken into account when studying elevational plant species richness patterns. In contrast to temperate regions open and forest habitats did not differ in SAR, probably due to a distinct vertical vegetation zonation in tropical forests. Therefore, it is important to consider all vegetation layers including epiphytes when studying SAR in highly structured tropical regions.


Sign in / Sign up

Export Citation Format

Share Document