plant community composition
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 86)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Author(s):  
R. Kyle Derby ◽  
Brian A. Needelman ◽  
Ana A. Roden ◽  
J. Patrick Megonigal

AbstractDirect measurement of methane emissions is cost-prohibitive for greenhouse gas offset projects, necessitating the development of alternative accounting methods such as proxies. Salinity is a useful proxy for tidal marsh CH4 emissions when comparing across a wide range of salinity regimes but does not adequately explain variation in brackish and freshwater regimes, where variation in emissions is large. We sought to improve upon the salinity proxy in a marsh complex on Deal Island Peninsula, Maryland, USA by comparing emissions from four strata differing in hydrology and plant community composition. Mean CH4 chamber-collected emissions measured as mg CH4 m−2 h−1 ranked as S. alterniflora (1.2 ± 0.3) ≫ High-elevation J. roemerianus (0.4 ± 0.06) > Low-elevation J. roemerianus (0.3 ± 0.07) = S. patens (0.1 ± 0.01). Sulfate depletion generally reflected the same pattern with significantly greater depletion in the S. alterniflora stratum (61 ± 4%) than in the S. patens stratum (1 ± 9%) with the J. roemerianus strata falling in between. We attribute the high CH4 emissions in the S. alterniflora stratum to sulfate depletion likely driven by limited connectivity to tidal waters. Low CH4 emissions in the S. patens stratum are attributed to lower water levels, higher levels of ferric iron, and shallow rooting depth. Moderate CH4 emissions from the J. roemerianus strata were likely due to plant traits that favor CH4 oxidation over CH4 production. Hydrology and plant community composition have significant potential as proxies to estimate CH4 emissions at the site scale.


Ecosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Samantha E. Walker ◽  
Gary Robbins ◽  
Ashley M. Helton ◽  
Beth A. Lawrence

Author(s):  
Marju Prass ◽  
Satu Ramula ◽  
Miia Jauni ◽  
Heikki Setälä ◽  
D. Johan Kotze

AbstractThe ecological impacts of invasive species may change or accumulate with time since local invasion, potentially inducing further changes in communities and the abiotic environment. Yet, time since invasion is rarely considered when investigating the ecological impacts of invasive non-native species. To examine the effect of time since invasion on the ecological impacts of Lupinus polyphyllus, a perennial nitrogen-fixing herb, we surveyed vascular plant communities in the presence and absence of L. polyphyllus in young, intermediate, and old semi-natural grassland sites (ca. 5, 10, 15 years representing both time since lupine invasion and plant community age). We analyzed vascular plant community composition, vascular plant species richness, and the cover of various ecological plant groups and L. polyphyllus. In contrast to our hypotheses, we found no change in the mean cover of L. polyphyllus (about 35%) with time since local invasion, and an ordination did not suggest marked changes in plant community composition. L. polyphyllus was associated with lower species richness in invaded plant communities but this effect did not change with time since invasion. Invaded plant communities were also associated with lower occurrence of generalist, oligotrophic (low-nutrient-adapted) and copiotrophic (nutrient-demanding) species but no temporal dynamics were detected. We conclude that even the intermediate cover of L. polyphyllus can reduce plant species richness, but the ecological impact caused by this invader might not dramatically change or accumulate with time since invasion.


Sign in / Sign up

Export Citation Format

Share Document