Geochemistry of gas and water discharge from the magmatic-hydrothermal system of Guallatiri volcano, northern Chile

2020 ◽  
Vol 82 (7) ◽  
Author(s):  
Manuel Inostroza ◽  
Franco Tassi ◽  
Felipe Aguilera ◽  
José Pablo Sepúlveda ◽  
Francesco Capecchiacci ◽  
...  
2014 ◽  
Vol 11 (20) ◽  
pp. 5687-5706 ◽  
Author(s):  
C. Monnin ◽  
V. Chavagnac ◽  
C. Boulart ◽  
B. Ménez ◽  
M. Gérard ◽  
...  

Abstract. The terrestrial hyperalkaline springs of Prony Bay (southern lagoon, New Caledonia) have been known since the nineteenth century, but a recent high-resolution bathymetric survey of the seafloor has revealed the existence of numerous submarine structures similar to the well-known Aiguille de Prony, which are also the location of high-pH fluid discharge into the lagoon. During the HYDROPRONY cruise (28 October to 13 November 2011), samples of waters, gases and concretions were collected by scuba divers at underwater vents. Four of these sampling sites are located in Prony Bay at depths up to 50 m. One (Bain des Japonais spring) is also in Prony Bay but uncovered at low tide and another (Rivière des Kaoris spring) is on land slightly above the seawater level at high tide. We report the chemical composition (Na, K, Ca, Mg, Cl, SO4, dissolved inorganic carbon, SiO2(aq)) of 45 water samples collected at six sites of high-pH water discharge, as well as the composition of gases. Temperatures reach 37 °C at the Bain des Japonais and 32 °C at the spring of the Kaoris. Gas bubbling was observed only at these two springs. The emitted gases contain between 12 and 30% of hydrogen in volume of dry gas, 6 to 14% of methane, and 56 to 72% of nitrogen, with trace amounts of carbon dioxide, ethane and propane. pH values and salinities of all the 45 collected water samples range from the seawater values (8.2 and 35 g L−1) to hyperalkaline freshwaters of the Ca-OH type (pH 11 and salinities as low as 0.3 g L−1) showing that the collected samples are always a mixture of a hyperalkaline fluid of meteoric origin and ambient seawater. Cl-normalized concentrations of dissolved major elements first show that the Bain des Japonais is distinct from the other sites. Water collected at this site are three component mixtures involving the high-pH fluid, the lagoon seawater and the river water from the nearby Rivière du Carénage. The chemical compositions of the hyperalkaline endmembers (at pH 11) are not significantly different from one site to the other although the sites are several kilometres away from each other and are located on different ultramafic substrata. The very low salinity of the hyperalkaline endmembers shows that seawater does not percolate through the ultramafic formation. Mixing of the hyperalkaline hydrothermal endmember with local seawater produces large ranges and very sharp gradients of pH, salinity and dissolved element concentrations. There is a major change in the composition of the water samples at a pH around 10, which delimitates the marine environment from the hyperalkaline environment. The redox potential evolves toward negative values at high pH indicative of the reducing conditions due to bubbling of the H2-rich gas. The calculation of the mineral saturation states carried out for the Na-K-Ca-Mg-Cl-SO4-DIC-SiO2-H2O system shows that this change is due to the onset of brucite formation. While the saturation state of the Ca carbonates over the whole pH range is typical of that found in a normal marine environment, Mg- and Mg-Ca carbonates (magnesite, hydromagnesite, huntite, dolomite) exhibit very large supersaturations with maximum values at a pH of around 10, very well marked for the Bain des Japonais, emphasizing the role of water mixing in mineral formation. The discharge of high-pH waters of meteoric origin into the lagoon marine environment makes the hydrothermal system of Prony Bay unique compared to other low temperature serpentinizing environments such as Oman (fully continental) or Lost City (fully marine).


2011 ◽  
Vol 74 (1) ◽  
pp. 119-134 ◽  
Author(s):  
Felipe Aguilera ◽  
F. Tassi ◽  
T. Darrah ◽  
S. Moune ◽  
O. Vaselli

2022 ◽  
Vol 117 (1) ◽  
pp. 25-55
Author(s):  
Stephanie Lohmeier ◽  
Bernd Lehmann ◽  
Albrecht Schneider ◽  
Andrew Hodgkin ◽  
Raymond Burgess

Abstract The El Volcán gold project (8.9 Moz Au @ 0.71 g/t Au) is located in the Maricunga gold belt in northern Chile, on the flank of the large Cenozoic Copiapó Volcanic Complex. Precious metal mineralization is hosted in two zones (Dorado and Ojo de Agua) of (pervasively) altered Miocene porphyry intrusions and lava flows of andesitic to rhyolitic composition, and in breccias. The ore zones reflect an evolving magmatic-hydrothermal system with mineral assemblages of magnetite-ilmenite-pyrite-molybdenite (early), bornite-chalcopyrite-pyrite-rutile (stage I), chalcocite-chalcopyrite-enargite-fahlore-pyrite (stage II), and chalcopyrite-covellite-pyrite (stage III). Alteration is dominantly of Maricunga-style (illite-smectite-chlorite ± kaolinite), partly obscured by quartz-kaolinite-alunite ± illite ± smectite alteration. Powdery quartz-alunite-kaolinite alteration with native sulfur and cinnabar forms shallow steam-heated zones. Early K-feldspar ± biotite alteration is preserved only in small porphyry cores and in deep drill holes. Most gold is submicrometer size and is in banded quartz veinlets, which are characteristic of the Maricunga gold belt. However, some gold is disseminated in zones of pervasive quartz-kaolinite-alunite alteration, with and without banded quartz veinlets. Minor visible gold is related to disseminated chalcocite-chalcopyrite-enargite-fahlore-pyrite. The lithogeochemical database identifies a pronounced Au-Te-Re signature (>100× bulk crust) of the hydrothermal system. Molybdenum-rich bulk rock (100–400 ppm Mo) has an Re-Os age of 10.94 ± 0.17 Ma (2σ). 40Ar-39Ar ages on deep K-feldspar alteration and on alunite altered rock have the same age within error and yield a combined age of 11.20 ± 0.25 Ma (2σ). The formation of the El Volcán gold deposit took place during the establishment of the Chilean flat-slab setting in a time of increasing crustal thickness when hydrous magmas were formed in a mature arc setting. The vigorous nature of the hydrothermal system is expressed by abundant one-phase vapor fluid inclusions recording magmatic vapor streaming through a large rock column with a vertical extent of ≥1,500 m.


2020 ◽  
Vol 139 (3) ◽  
pp. 359-373
Author(s):  
Manuel Inostroza ◽  
Franco Tassi ◽  
José Sepúlveda ◽  
Francesco Capecchiacci ◽  
Andrea I. Rizzo ◽  
...  

2006 ◽  
Vol 41 (3) ◽  
pp. 246-258 ◽  
Author(s):  
L. E. Ramírez ◽  
C. Palacios ◽  
B. Townley ◽  
M. A. Parada ◽  
A. N. Sial ◽  
...  

Author(s):  
Anatoly Kusher

The reliability of water flow measurement in irrigational canals depends on the measurement method and design features of the flow-measuring structure and the upstream flow velocity profile. The flow velocity profile is a function of the channel geometry and wall roughness. The article presents the study results of the influence of the upstream flow velocity profile on the discharge measurement accuracy. For this, the physical and numerical modeling of two structures was carried out: a critical depth flume and a hydrometric overfall in a rectangular channel. According to the data of numerical simulation of the critical depth flume with a uniform and parabolic (1/7) velocity profile in the upstream channel, the values of water discharge differ very little from the experimental values in the laboratory model with a similar geometry (δ < 2 %). In contrast to the critical depth flume, a change in the velocity profile only due to an increase in the height of the bottom roughness by 3 mm causes a decrease of the overfall discharge coefficient by 4…5 %. According to the results of the numerical and physical modeling, it was found that an increase of backwater by hydrometric structure reduces the influence of the upstream flow velocity profile and increases the reliability of water flow measurements.


2018 ◽  
Vol 52 (4) ◽  
pp. 317-333 ◽  
Author(s):  
Jaeguk Jo ◽  
Toshiro Yamanaka ◽  
Tomoki Kashimura ◽  
Yusuke Okunishi ◽  
Yoshihiro Kuwahara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document