ore mineralogy
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 35)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 117 (1) ◽  
pp. 25-55
Author(s):  
Stephanie Lohmeier ◽  
Bernd Lehmann ◽  
Albrecht Schneider ◽  
Andrew Hodgkin ◽  
Raymond Burgess

Abstract The El Volcán gold project (8.9 Moz Au @ 0.71 g/t Au) is located in the Maricunga gold belt in northern Chile, on the flank of the large Cenozoic Copiapó Volcanic Complex. Precious metal mineralization is hosted in two zones (Dorado and Ojo de Agua) of (pervasively) altered Miocene porphyry intrusions and lava flows of andesitic to rhyolitic composition, and in breccias. The ore zones reflect an evolving magmatic-hydrothermal system with mineral assemblages of magnetite-ilmenite-pyrite-molybdenite (early), bornite-chalcopyrite-pyrite-rutile (stage I), chalcocite-chalcopyrite-enargite-fahlore-pyrite (stage II), and chalcopyrite-covellite-pyrite (stage III). Alteration is dominantly of Maricunga-style (illite-smectite-chlorite ± kaolinite), partly obscured by quartz-kaolinite-alunite ± illite ± smectite alteration. Powdery quartz-alunite-kaolinite alteration with native sulfur and cinnabar forms shallow steam-heated zones. Early K-feldspar ± biotite alteration is preserved only in small porphyry cores and in deep drill holes. Most gold is submicrometer size and is in banded quartz veinlets, which are characteristic of the Maricunga gold belt. However, some gold is disseminated in zones of pervasive quartz-kaolinite-alunite alteration, with and without banded quartz veinlets. Minor visible gold is related to disseminated chalcocite-chalcopyrite-enargite-fahlore-pyrite. The lithogeochemical database identifies a pronounced Au-Te-Re signature (>100× bulk crust) of the hydrothermal system. Molybdenum-rich bulk rock (100–400 ppm Mo) has an Re-Os age of 10.94 ± 0.17 Ma (2σ). 40Ar-39Ar ages on deep K-feldspar alteration and on alunite altered rock have the same age within error and yield a combined age of 11.20 ± 0.25 Ma (2σ). The formation of the El Volcán gold deposit took place during the establishment of the Chilean flat-slab setting in a time of increasing crustal thickness when hydrous magmas were formed in a mature arc setting. The vigorous nature of the hydrothermal system is expressed by abundant one-phase vapor fluid inclusions recording magmatic vapor streaming through a large rock column with a vertical extent of ≥1,500 m.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Quentin Dehaine ◽  
Laurens T. Tijsseling ◽  
Gavyn K. Rollinson ◽  
Mike W. N. Buxton ◽  
Hylke J. Glass

Cobalt (Co) mine production primarily originates from the sediment-hosted copper (Cu) deposits of the Democratic Republic of Congo (DRC). These deposits usually consist of three ore zones with a supergene oxide ore blanket overlying a transition zone which grades into a sulphide zone at depth. Each of these zones display a mineral assemblage with varying gangue mineralogy and, most importantly, a distinct state of oxidation of the mineralisation. This has direct implications for Cu and Co extraction during mineral processing as it dictates which processing method is to be used (i.e., leaching vs. flotation) and affects the performance of these. To optimise resource efficiency, reduce technical risks and environmental impacts, comprehensive understanding of variation of ore mineralogy and texture in the deposit is essential. By defining geometallurgical ore types according to their inferred metallurgical behaviour, this information can serve to classify the resources and improve resource management. To obtain insight into the spatial distribution of mineral grades, it is necessary to develop techniques that have the potential to measure rapidly and, preferably, within the mine at relatively low-cost. In this study, the application of portable Fourier transformed infrared (FTIR) spectroscopy is investigated to measure the mineralogy of drill core samples. A set of samples from a sediment-hosted Cu-Co deposit in DRC was selected to test this approach. Results were validated using automated mineralogy (QEMSCAN). Prediction of gangue and target mineral grades from the FTIR spectra was achieved through partial least squares regression (PLS-R) combined with competitive adaptive reweighted sampling (CARS). It is shown that the modal mineralogy obtained from FTIR can be used to classify the ore according to type of mineralisation and gangue mineralogy into geometallurgical ore types. This classification supports selection of a suitable processing route and is likely to affect the overall process performance.


2021 ◽  
Vol 82 (3) ◽  
pp. 150-152
Author(s):  
Ralica Sabeva

The Krusha ore occurrence is located in the western part of the Srednogorie zone. The quartz-chalcopyrite veins are hosted by altered basaltic andesites. The styles of alteration are propylitic, sericitic, argillic and advanced argillic. The ore veins consist mainly of chalcopyrite, quartz and carbonates. Native copper is observed as single grains. Chalcopyrite is with high contents of Se. Au is up to 3.13 ppm with average contents of 1.43 ppm.


2021 ◽  
Vol 82 (3) ◽  
pp. 147-149
Author(s):  
Ralica Sabeva

The Pishtene ore occurrence is situated north-northeast from the Pishtene paleovolcanic center in the western part of the Srednogorie zone. The occurrence is hosted by altered basaltic trachyandesites. The styles of alteration are advance argillic, argillic, sericitic and propylitic. Ore mineralization is in quartz-sericite zone and is represented by quartz-pyrite and quartz-polymetallic. The ore minerals are pyrite, chalcopyrite and sphalerite. Pyrite from quartz-polymetallic stage is with high concentrations of Cu, Se and Co. Au with low contents is also detected.


Author(s):  
Kashinath Barik ◽  
Pallishree Prusti ◽  
B. C. Meikap ◽  
Shatrughan Soren ◽  
R. Venugopal ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Jiří Sejkora ◽  
Martin Števko ◽  
Jaroslav Pršek ◽  
Róbert Hovorič ◽  
Emil Makovicky ◽  
...  

Unique association of sulphosalts was discovered at the Kľačianka occurrence, Nízke Tatry Mts., Slovak Republic. It is bound to thin hydrothermal veins with Sb mineralization hosted by the Variscan muscovite-biotite granodiorite and granite of Prašivá type. Ore mineralogy and crystal chemistry of ore minerals are studied here by ore microscopy, X-ray powder diffraction, electron microprobe analyses, and Raman spectroscopy. The early ore mineralization composed of pyrite and arsenopyrite is hosted in quartz gangue and is followed by abundant association of sulfosalts. Stibnite, zinkenite, robinsonite (including Cu-bearing variety), jamesonite, scainiite, dadsonite, disulfodadsonite, rouxelite, chovanite, semseyite, boulangerite, geocronite, tintinaite (with low Bi contents), tetrahedrite-(Fe), tetrahedrite-(Zn), bournonite, chalcostibite, bismuthinite, and gladite in association with sphalerite and rare galena and gold are identified here. The chlorine-rich character of the described sulphosalt association is its characteristic phenomenon. It is represented not only by the occurrence of Cl-sulphosalt and dadsonite, but increased Cl contents were detected in boulangerite, chovanite, disulfodadsonite, robinsonite, rouxelite, scainiite, or tintinaite. The presence of oxygen-containing sulphosalts, such as rouxelite, scainiite and chovanite, is also interesting. The crystallization of these rare chloro-, oxy- and oxy-chloro-sulphosalts at the Kľačianka occurrence required very specific conditions (elevated O2/S2 fugacity) and high chlorine activity in ore-forming fluids.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 944
Author(s):  
Jessica Bogossian ◽  
Anthony I. S. Kemp ◽  
Steffen G. Hagemann

The Goiás Archean Block (GAB) in central Brazil is an important gold district that hosts several world-class orogenic gold deposits. A better comprehension of the crustal, tectono-magmatic, and metallogenic settings of the GAB is essential to accurately define its geological evolution, evaluate Archean crustal growth models, and target gold deposits. We present an overview of gold systems, regional whole-rock Sm-Nd analyses that have been used to constrain the geological evolution of the GAB, and augment this with new in situ zircon U-Pb and Hf-O isotope data. The orogenic gold deposits show variable host rocks, structural settings, hydrothermal alteration, and ore mineralogy, but they represent epigenetic deposits formed during the same regional hydrothermal event. The overprinting of metamorphic assemblages by ore mineralogy suggests the hydrothermal event is post-peak metamorphism. The metamorphic grade of the host rocks is predominantly greenschist, locally reaching amphibolite facies. Isotope-time trends support a Mesoarchean origin of the GAB, with ocean opening at 3000–2900 Ma, and reworking at 2800–2700 Ma. Crustal growth was dominated by subduction processes via in situ magmatic additions along lithospheric discontinuities and craton margins. This promoted a crustal architecture composed of young, juvenile intra-cratonic terranes and old, long-lived reworked crustal margins. This framework provided pathways for magmatism and fluids that drove the gold endowment of the GAB.


2021 ◽  
pp. 40-67
Author(s):  
Aleksander Chernykh ◽  
Alexey Shirobokov ◽  
Irina Arsentieva

The Elegest-Mezhegei, Aptara, and Shivilig forecasted gold ore clusters and the Kharalyg and Irbitei forecasted gold-silver-polymetallic ore clusters were distinguished within the East Tannu-Ola iron-copper-polymetallic-gold ore region, based on examination of historical and new geological, geochemical, and metallogenical data. Subsequently, the Urgailyg, Proezdnoe, and Chumurtuk forecasted gold ore fields were delineated within the Elegest-Mezhegei cluster; the Despen ore field was delineated within the Aptara ore cluster; and the Ovur-Ongesh ore field was outlined within the Shivilig cluster. In addition, the Ulug-Sailyg and Ak-Charinsk gold-molybdenum-copper ore fields were distinguished outside the ore clusters. The article summarizes the investigation history, geological-structural position, geological features, and geochemical specialization of the rocks of the East Tannu-Ola region. Descriptions of the ore clusters embrace peculiarities of their geological structure, ore mineralogy, and native gold, as well as parameters of the gold-sulfide-quartz, goldskarn, gold-containing polymetallic VMS, and porphyry molybdenum-copper mineralized zones. The conclusions highlight the metallogenic epochs and distribution regularities of the gold and gold-containing mineralization within the region studied.


2021 ◽  
Vol 48 (1) ◽  
pp. 7-47
Author(s):  
Felipe Arrubla Arango ◽  
Sergio Esteban Silva Sánchez

The Frontino-Morrogacho gold district is located on the western flank of the Western Cordillera, NW of Antioquia Province. Gold mineralizations in the area are spatially and genetically associated with the cooling  of three mid- to late-Miocene age intrusive centers in the form of stocks and dikes (12-9 Ma): Cerro Frontino,  La Horqueta and Morrogacho (El Cerro Igneous Complex). These composite magmatic pulses, with  ultramafic to intermediate compositions, vary into diorite-, gabbro- and monzonitic-bearing phases.  Mineralization in the complex is present as several structurally controlled fault veins, shear-related veins,  sheeted quartz extension veins and quartz-carbonate tabular extension veins, with the development of  swarms and nests of veins-veinlets, breccias and stockworks. Structures range from centimeter-wide  individual veinlets to several meter-wide swarms of veins developed within broad mineralized structural  corridors, with a metallic signature that consists of Au + Ag + Cu + Zn + Pb + As (± Te ± Bi ± Sb ± Hg ± W)  assemblages. Veins are composed of multiple stages of mineralization, and the formation of these  structures is enhanced by the presence of a local regime of extension and E-trending structures, including  evidence of faults and shear zones with right-lateral displacement, which are likely involved in pluton  emplacement and cooling. The ore mineralogy is composed of pyrrhotite, pyrite, chalcopyrite, sphalerite,  galena and arsenopyrite assemblages formed in two or more mineralization stages, with complex Bi, Te, Sb  and Hg mineral specimens associated with Au and Ag. Mineralized structures of the district present a preferential E-strike with dominant vertical to subvertical and occasional subhorizontal S-dips and secondary N- and NW-strikes that are steep to vertically E-dipping. The Frontino-Morrogacho Gold district presents characteristics related to the architecture, mineralogy and  alteration of reduced (ilmenite-series) intrusion-related gold systems but is genetically associated with a  parental oxidized magma source. The gold content is associated with three different families involving electrum, tellurides and alloys: gold rich (66 to 78% Au, 22 to 34% Ag), average (50 to 60% Au, 40 to 50% Ag)  and silver rich (32 to 40% Au, 60 to 68% Ag). The formation of these bodies is associated with an N-S  magmatic-metallogenic trend of Au-Ag-Cu deposits, which extend for more than 300 km along the Western  Cordillera of Colombia. Similar plutonic suites span from the south of Chocó Province to the north of Antioquia Province, which indicates that the Frontino-Farallones-Botón arc can be proposed as an individual  metallogenic belt.


Sign in / Sign up

Export Citation Format

Share Document