Exponential Lower Bounds on the Complexity of a Class of Dynamic Programs for Combinatorial Optimization Problems

Algorithmica ◽  
2010 ◽  
Vol 62 (3-4) ◽  
pp. 659-700 ◽  
Author(s):  
Agustín Bompadre
Author(s):  
Chu Min Li ◽  
Felip Manyà

MaxSAT solving is becoming a competitive generic approach for solving combinatorial optimization problems, partly due to the development of new solving techniques that have been recently incorporated into modern MaxSAT solvers, and to the challenge problems posed at the MaxSAT Evaluations. In this chapter we present the most relevant results on both approximate and exact MaxSAT solving, and survey in more detail the techniques that have proven to be useful in branch and bound MaxSAT and Weighted MaxSAT solvers. Among such techniques, we pay special attention to the definition of good quality lower bounds, powerful inference rules, clever variable selection heuristics and suitable data structures. Moreover, we discuss the advantages of dealing with hard and soft constraints in the Partial MaxSAT formalims, and present a summary of the MaxSAT Evaluations that have been organized so far as affiliated events of the International Conference on Theory and Applications of Satisfiability Testing.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 230 ◽  
Author(s):  
Joran van Apeldoorn ◽  
András Gilyén ◽  
Sander Gribling ◽  
Ronald de Wolf

Brandão and Svore \cite{brandao2016QSDPSpeedup} recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension n of the problem and the number m of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure.We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimization problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with mn when m≈n, which is the same as classical.


Sign in / Sign up

Export Citation Format

Share Document