scholarly journals A Randomized Algorithm for Triangulating a Simple Polygon in Linear Time

2001 ◽  
Vol 26 (2) ◽  
pp. 245-265 ◽  
Author(s):  
N. M. Amato ◽  
M. T. Goodrich ◽  
E. A. Ramos
1996 ◽  
Vol 06 (03) ◽  
pp. 263-278 ◽  
Author(s):  
ROLF KLEIN ◽  
ANDRZEJ LINGAS

For a polygon P, the bounded Voronoi diagram of P is a partition of P into regions assigned to the vertices of P. A point p inside P belongs to the region of a vertex v if and only if v is the closest vertex of P visible from p. We present a randomized algorithm that builds the bounded Voronoi diagram of a simple polygon in linear expected time. Among other applications, we can construct within the same time bound the generalized Delaunay triangulation of P and the minimal spanning tree on P’s vertices that is contained in P.


Author(s):  
Bengt J. Nilsson ◽  
Paweł Żyliński

We present new results on two types of guarding problems for polygons. For the first problem, we present an optimal linear time algorithm for computing a smallest set of points that guard a given shortest path in a simple polygon having [Formula: see text] edges. We also prove that in polygons with holes, there is a constant [Formula: see text] such that no polynomial-time algorithm can solve the problem within an approximation factor of [Formula: see text], unless P=NP. For the second problem, we present a [Formula: see text]-FPT algorithm for computing a shortest tour that sees [Formula: see text] specified points in a polygon with [Formula: see text] holes. We also present a [Formula: see text]-FPT approximation algorithm for this problem having approximation factor [Formula: see text]. In addition, we prove that the general problem cannot be polynomially approximated better than by a factor of [Formula: see text], for some constant [Formula: see text], unless P [Formula: see text]NP.


1999 ◽  
Vol 21 (3) ◽  
pp. 405-420 ◽  
Author(s):  
F. Chin ◽  
J. Snoeyink ◽  
C. A. Wang

1986 ◽  
Vol 19 (6) ◽  
pp. 453-458 ◽  
Author(s):  
S.Y. Shin ◽  
T.C. Woo

2005 ◽  
Vol 1 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Sanguthevar Rajasekaran

Given a weighted graph G(V;E), a minimum spanning tree for G can be obtained in linear time using a randomized algorithm or nearly linear time using a deterministic algorithm. Given n points in the plane, we can construct a graph with these points as nodes and an edge between every pair of nodes. The weight on any edge is the Euclidean distance between the two points. Finding a minimum spanning tree for this graph is known as the Euclidean minimum spanning tree problem (EMSTP). The minimum spanning tree algorithms alluded to before will run in time O(n2) (or nearly O(n2)) on this graph. In this note we point out that it is possible to devise simple algorithms for EMSTP in k- dimensions (for any constant k) whose expected run time is O(n), under the assumption that the points are uniformly distributed in the space of interest.CR Categories: F2.2 Nonnumerical Algorithms and Problems; G.3 Probabilistic Algorithms


Sign in / Sign up

Export Citation Format

Share Document