scholarly journals Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear-time

Author(s):  
Cao An Wang ◽  
Francis Chin
1996 ◽  
Vol 06 (03) ◽  
pp. 263-278 ◽  
Author(s):  
ROLF KLEIN ◽  
ANDRZEJ LINGAS

For a polygon P, the bounded Voronoi diagram of P is a partition of P into regions assigned to the vertices of P. A point p inside P belongs to the region of a vertex v if and only if v is the closest vertex of P visible from p. We present a randomized algorithm that builds the bounded Voronoi diagram of a simple polygon in linear expected time. Among other applications, we can construct within the same time bound the generalized Delaunay triangulation of P and the minimal spanning tree on P’s vertices that is contained in P.


1995 ◽  
Vol 05 (01n02) ◽  
pp. 53-74 ◽  
Author(s):  
ROLF KLEIN ◽  
ANDRZEJ LINGAS

Let P be a simple planar polygon. We present a linear time algorithm for constructing the bounded Voronoi diagram of P in the Manhattan metric, where each point z in P belongs to the region of the closest vertex of P that is visible from z. Among other consequences, the minimum spanning tree of the vertices in the Manhattan metric that is contained in P can be computed within optimal linear time. The same results hold for the L∞-metric.α


2011 ◽  
Vol 90-93 ◽  
pp. 3277-3282 ◽  
Author(s):  
Bai Chao Wu ◽  
Ai Ping Tang ◽  
Lian Fa Wang

The foundation ofdelaunay triangulationandconstrained delaunay triangulationis the basis of three dimensional geographical information system which is one of hot issues of the contemporary era; moreover it is widely applied in finite element methods, terrain modeling and object reconstruction, euclidean minimum spanning tree and other applications. An algorithm for generatingconstrained delaunay triangulationin two dimensional planes is presented. The algorithm permits constrained edges and polygons (possibly with holes) to be specified in the triangulations, and describes some data structures related to constrained edges and polygons. In order to maintain the delaunay criterion largely,some new incremental points are added onto the constrained ones. After the data set is preprocessed, the foundation ofconstrained delaunay triangulationis showed as follows: firstly, the constrained edges and polygons generate initial triangulations,then the remained points completes the triangulation . Some pseudo-codes involved in the algorithm are provided. Finally, some conclusions and further studies are given.


Author(s):  
Bengt J. Nilsson ◽  
Paweł Żyliński

We present new results on two types of guarding problems for polygons. For the first problem, we present an optimal linear time algorithm for computing a smallest set of points that guard a given shortest path in a simple polygon having [Formula: see text] edges. We also prove that in polygons with holes, there is a constant [Formula: see text] such that no polynomial-time algorithm can solve the problem within an approximation factor of [Formula: see text], unless P=NP. For the second problem, we present a [Formula: see text]-FPT algorithm for computing a shortest tour that sees [Formula: see text] specified points in a polygon with [Formula: see text] holes. We also present a [Formula: see text]-FPT approximation algorithm for this problem having approximation factor [Formula: see text]. In addition, we prove that the general problem cannot be polynomially approximated better than by a factor of [Formula: see text], for some constant [Formula: see text], unless P [Formula: see text]NP.


Sign in / Sign up

Export Citation Format

Share Document