How to Keep an Eye on Small Things

Author(s):  
Bengt J. Nilsson ◽  
Paweł Żyliński

We present new results on two types of guarding problems for polygons. For the first problem, we present an optimal linear time algorithm for computing a smallest set of points that guard a given shortest path in a simple polygon having [Formula: see text] edges. We also prove that in polygons with holes, there is a constant [Formula: see text] such that no polynomial-time algorithm can solve the problem within an approximation factor of [Formula: see text], unless P=NP. For the second problem, we present a [Formula: see text]-FPT algorithm for computing a shortest tour that sees [Formula: see text] specified points in a polygon with [Formula: see text] holes. We also present a [Formula: see text]-FPT approximation algorithm for this problem having approximation factor [Formula: see text]. In addition, we prove that the general problem cannot be polynomially approximated better than by a factor of [Formula: see text], for some constant [Formula: see text], unless P [Formula: see text]NP.

2019 ◽  
Author(s):  
Md. Khaledur Rahman ◽  
M. Sohel Rahman

AbstractThe genome rearrangement problem computes the minimum number of operations that are required to sort all elements of a permutation. A block-interchange operation exchanges two blocks of a permutation which are not necessarily adjacent and in a prefix block-interchange, one block is always the prefix of that permutation. In this paper, we focus on applying prefix block-interchanges on binary and ternary strings. We present upper bounds to group and sort a given binary/ternary string. We also provide upper bounds for a different version of the block-interchange operation which we refer to as the ‘restricted prefix block-interchange’. We observe that our obtained upper bound for restricted prefix block-interchange operations on binary strings is better than that of other genome rearrangement operations to group fully normalized binary strings. Consequently, we provide a linear-time algorithm to solve the problem of grouping binary normalized strings by restricted prefix block-interchanges. We also provide a polynomial time algorithm to group normalized ternary strings by prefix block-interchange operations. Finally, we provide a classification for ternary strings based on the required number of prefix block-interchange operations.


1995 ◽  
Vol 05 (01n02) ◽  
pp. 53-74 ◽  
Author(s):  
ROLF KLEIN ◽  
ANDRZEJ LINGAS

Let P be a simple planar polygon. We present a linear time algorithm for constructing the bounded Voronoi diagram of P in the Manhattan metric, where each point z in P belongs to the region of the closest vertex of P that is visible from z. Among other consequences, the minimum spanning tree of the vertices in the Manhattan metric that is contained in P can be computed within optimal linear time. The same results hold for the L∞-metric.α


Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


2021 ◽  
Vol 70 ◽  
Author(s):  
Stephan Waeldchen ◽  
Jan Macdonald ◽  
Sascha Hauch ◽  
Gitta Kutyniok

For a d-ary Boolean function Φ: {0, 1}d → {0, 1} and an assignment to its variables x = (x1, x2, . . . , xd) we consider the problem of finding those subsets of the variables that are sufficient to determine the function value with a given probability δ. This is motivated by the task of interpreting predictions of binary classifiers described as Boolean circuits, which can be seen as special cases of neural networks. We show that the problem of deciding whether such subsets of relevant variables of limited size k ≤ d exist is complete for the complexity class NPPP and thus, generally, unfeasible to solve. We then introduce a variant, in which it suffices to check whether a subset determines the function value with probability at least δ or at most δ − γ for 0 < γ < δ. This promise of a probability gap reduces the complexity to the class NPBPP. Finally, we show that finding the minimal set of relevant variables cannot be reasonably approximated, i.e. with an approximation factor d1−α for α > 0, by a polynomial time algorithm unless P = NP. This holds even with the promise of a probability gap.


2005 ◽  
Vol 15 (02) ◽  
pp. 193-208 ◽  
Author(s):  
SERGEY BEREG

We consider the problem of continuously transforming or morphing one simple polyline into another polyline so that every point p of the initial polyline moves to a point q of the final polyline using the geodesic shortest path from p to q. The width of a morphing is defined as the longest geodesic path between corresponding points of the polylines. The optimization problem is to compute a morphing that minimizes the width. We present a linear-time algorithm for finding a morphing with width guaranteed to be at most two times the minimum width of a morphing. This improves the previous algorithm10 by a factor of log n. We develop a linear-time algorithm for computing a medial axis separator. We also show that the approximation factor is less than two for κ-straight polylines.


Sign in / Sign up

Export Citation Format

Share Document