scholarly journals A mixed u–p edge-based smoothed particle finite element formulation for viscous flow simulations

Author(s):  
Janis Reinold ◽  
Günther Meschke

AbstractA mixed u–p edge-based smoothed particle finite element formulation is proposed for computational simulations of viscous flow. In order to improve the accuracy of the standard particle finite element method, edge-based and face-based smoothing operations on the displacement gradient are proposed for 2D and 3D analyses, respectively. Consequently, spatial integration involving the smoothing operator is performed on smoothing domains. The constitutive model is based on an elasto-viscoplastic formulation allowing for simulations of viscous fluid or fluid-like solid materials. The viscous response is modeled using an overstress function. The performance of the proposed edge-based smoothed particle finite element method (ES-PFEM) is demonstrated by several numerical benchmark studies, showing an excellent agreement with analytical and reference solutions and an improved accuracy and computational efficiency in comparison with results from the standard PFEM model. Finally, a numerical application of the ES-PFEM to the computational simulation of the extrusion process during 3D-concrete-printing is discussed.

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
L. Zhang ◽  
J. M. Zhao ◽  
L. H. Liu

A new stabilized finite element formulation for solving radiative transfer equation is presented. It owns the salient feature of least-squares finite element method (LSFEM), i.e., free of the tuning parameter that appears in the streamline upwind/Petrov–Galerkin (SUPG) finite element method. The new finite element formulation is based on a second-order form of the radiative transfer equation. The second-order term will provide essential diffusion as the artificial diffusion introduced in traditional stabilized schemes to ensure stability. The performance of the new method was evaluated using challenging test cases featuring strong medium inhomogeneity and large gradient of radiative intensity field. It is demonstrated to be computationally efficient and capable of solving radiative heat transfer in strongly inhomogeneous media with even better accuracy than the LSFEM, and hence a promising alternative finite element formulation for solving complex radiative transfer problems.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840010 ◽  
Author(s):  
Yuki Onishi

A new type of smoothed finite element method (S-FEM), F-barES-FEM-T4, is demonstrated in static large deformation elastoplastic cases. F-barES-FEM-T4 combines the edge-based S-FEM (ES-FEM) and the node-based S-FEM (NS-FEM) for 4-node tetrahedral (T4) elements with the aid of the F-bar method in order to resolve the major issues of Selective ES/NS-FEM-T4. As well as most of the other S-FEMs, F-barES-FEM-T4 inherits pure displacement-based formulation and thus has no increase in DOF. Moreover, the cyclic smoothing procedure introduced in F-barES-FEM-T4 is effective to adjust the smoothing level so that pressure checkerboarding (oscillation) is suppressed reasonably. Some examples of static large deformation analyses for elastoplastic materials proof the excellent performance of F-barES-FEM-T4 in contrast to the conventional hybrid T4 element formulation.


Sign in / Sign up

Export Citation Format

Share Document