Applications of a reduction method for reanalysis to nonlinear dynamic analysis of framed structures

2000 ◽  
Vol 26 (5) ◽  
pp. 497-505 ◽  
Author(s):  
L.-J. Leu ◽  
C.-H. Tsou
AIAA Journal ◽  
2011 ◽  
Vol 49 (10) ◽  
pp. 2295-2304 ◽  
Author(s):  
Paolo Tiso ◽  
Eelco Jansen ◽  
Mostafa Abdalla

Author(s):  
Zhaohui Chen ◽  
Min He ◽  
Yuchen Tao ◽  
Y. B. Yang

In this paper, by implanting the rigid body rule (RBR)-based strategy for static nonlinear problems into the implicit direct integration procedure, an efficient and robustness nonlinear dynamic analysis method for the response of framed structures with large deflections and rotations is proposed. The implicit integration method proposed by Newmark is improved by inserting an intermediate time into the time step and by adding the 3-point backward difference in the second substep so as to preserve the momentum conservation and to maintain the stability of the direct integration method. To solve the equivalent incremental equations of motion, the RBR is built in to deal with the rigid rotations and the resulting additional nodal forces of element. During the increment-iterative procedure, the use of RBR-qualified geometric stiffness in the predictor reduces the numbers of iterations, while the elastic stiffness alone in the corrector to update the element nodal forces makes the computation efficiency and convergence with no virtual forces caused by the ill geometric stiffness. The proposed algorithm is advanced in the applications of several framed structures with highly nonlinear behavior in the dynamic response by its simplicity, efficient and robustness.


2018 ◽  
Vol 156 ◽  
pp. 351-362 ◽  
Author(s):  
Yi Hui ◽  
Hou Jun Kang ◽  
Siu Seong Law ◽  
Zheng Qing Chen

Sign in / Sign up

Export Citation Format

Share Document