An Efficient and Robust Nonlinear Dynamic Analysis Method for Framed Structures Using the Rigid Body Rule

Author(s):  
Zhaohui Chen ◽  
Min He ◽  
Yuchen Tao ◽  
Y. B. Yang

In this paper, by implanting the rigid body rule (RBR)-based strategy for static nonlinear problems into the implicit direct integration procedure, an efficient and robustness nonlinear dynamic analysis method for the response of framed structures with large deflections and rotations is proposed. The implicit integration method proposed by Newmark is improved by inserting an intermediate time into the time step and by adding the 3-point backward difference in the second substep so as to preserve the momentum conservation and to maintain the stability of the direct integration method. To solve the equivalent incremental equations of motion, the RBR is built in to deal with the rigid rotations and the resulting additional nodal forces of element. During the increment-iterative procedure, the use of RBR-qualified geometric stiffness in the predictor reduces the numbers of iterations, while the elastic stiffness alone in the corrector to update the element nodal forces makes the computation efficiency and convergence with no virtual forces caused by the ill geometric stiffness. The proposed algorithm is advanced in the applications of several framed structures with highly nonlinear behavior in the dynamic response by its simplicity, efficient and robustness.

1981 ◽  
Vol 103 (1) ◽  
pp. 27-32 ◽  
Author(s):  
V. N. Shah ◽  
A. J. Hartmann

A modal superposition method for the nonlinear dynamic analysis of a structure subjected to multiple support motions is presented. The nonlinearities are due to clearances between the components and their supports. The finite element method is used to derive the equations of motion with the nonlinearities represented by a pseudo force vector. The displacement response may be divided into two parts: elastic deformation and rigid body motion. The presence of rigid body motion necessitates the inclusion of the higher modes in the transient analysis. The modal superposition method is used to analyze the dynamic response of one loop of the nuclear steam supply system. This loop has nonlinear supports and is subjected to nonuniform seismic excitations at the supports. It is shown that the computational cost of the modal superposition method is lower than that of the direct integration.


Sign in / Sign up

Export Citation Format

Share Document