Inventory policies for seasonal items with logistic-growth demand rate under fully permissible delay in payment: a neutrosophic optimization approach

2020 ◽  
Author(s):  
Bappa Mondal ◽  
Arindam Garai ◽  
Arindum Mukhopadhyay ◽  
Sanat Kumar Majumder
Author(s):  
Chandra K. Jaggi ◽  
Bimal Kumar Mishra ◽  
T. C. Panda

This chapter develops an economic order quantity model for deteriorating items with initial inspection, allowable shortage under the condition of permissible delay in payment by fuzzify the demand rate, deterioration rate and inspection parameter of non-defective parameter based on as triangular fuzzy numbers to fit the real word. The total fuzzy cost function has been defuzzified using signed distance and centroid method. Comparison between these two methods has also been discussed. The validity of the model has been established with the help of a hypothetical numerical example.


2017 ◽  
Vol 27 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Naresh Kaliraman ◽  
Ritu Raj ◽  
Shalini Chandra ◽  
Harish Chaudhary

A two warehouse inventory model for deteriorating items is considered with exponential demand rate and permissible delay in payment. Shortage is not allowed and deterioration rate is constant. In the model, one warehouse is rented and the other is owned. The rented warehouse is provided with better facility for the stock than the owned warehouse, but is charged more. The objective of this model is to find the best replenishment policies for minimizing the total appropriate inventory cost. A numerical illustration and sensitivity analysis is provided.


Author(s):  
BAPPA MONDAL ◽  
Arindam Garai ◽  
Tapan Kumar Roy

This article presents one generalized order-level inventory system with fully permissible delay in payment in various trade-credit intervals. Review of existing literature nds few EOQ models under simultaneous considerations of time-dependent generalized demand rate, time-dependent generalized rate of deterioration and time-dependent generalized backordering under fully permissible delay in payment. In those existing studies, the optimal inventory depletion time is independent of demand over the entire cycle. Here, present article frames one generalized order level inventory system with fully permissible delay in payment across various trade-credit intervals. This nds that when the trade-credit period is longer than the inventory depletion time to settle the account, the optimal inventory depletion time is dependent of demand. Under this ambiance, one particular case having time-dependent ramp type demand rate, two variables time-dependent Weibull distribution rate of deterioration and time-dependent backordering rate with fully permissible delay in payment, nds that the optimal inventory depletion time varies inversely over demand in that period. Moreover, the proposed model shrinks to obtain many well-established EOQ models as the special cases to it. Next, a general algorithm determines the various optimal solutions corresponding to seven cases. The managerial insights extracted from sensitivity analysis of parameters include the suggestion to halt the promotional activities so as to foreshorten the demand in shortage period. Also, this analysis attests that the longer waiting period of retailers should be counterbalanced with various promotional activities and anticipated benefits.


SIMULATION ◽  
2021 ◽  
pp. 003754972110061
Author(s):  
Hamed Golabian ◽  
Jamal Arkat ◽  
Hiwa Farughi ◽  
Reza Tavakkoli-Moghaddam

In an emergency medical system, the locations of ambulance stations has a direct impact on response time. In this paper, two location models are presented in combination with the hypercube queuing model to maximize coverage probability. In the first model, the locations of free and busy ambulances are considered in the system states, and the hypercube model can be analyzed accurately. The model contains a large number of states, and cannot be used for large-sized problems. For this reason, the second model is presented with the same assumptions as in the first model, except that the locations of busy ambulances are not included in the system state, but approximated based on the arrival rates. Both models are offline and dynamic, in which an ambulance does not necessarily return to the station from which it has been dispatched. Two strategies are defined for returning ambulances to the stations from the customer’s location. In the first strategy, the ambulance is returned to the nearest station after completion of its mission, and in the second strategy, it returns to the empty station that covers the highest demand rate. For evaluation of the performance of the proposed models, small-sized examples are solved for both return strategies using the GAMS software. A simulation-optimization approach combined with a simulated annealing algorithm and a discrete-event simulation are used for solving large-sized problems. Moreover, real data from a case study are used to demonstrate the performance of the models in the real world.


Sign in / Sign up

Export Citation Format

Share Document