Dynamics of pattern formation process in fractional-order super-diffusive processes: a computational approach

2021 ◽  
Author(s):  
Kolade M. Owolabi ◽  
Berat Karaagac ◽  
Dumitru Baleanu
2020 ◽  
Vol 85 (2) ◽  
pp. 231-262
Author(s):  
Mark Ainsworth ◽  
Zhiping Mao

Abstract We consider a fractional phase-field crystal (FPFC) model in which the classical Swift–Hohenberg equation (SHE) is replaced by a fractional order Swift–Hohenberg equation (FSHE) that reduces to the classical case when the fractional order $\beta =1$. It is found that choosing the value of $\beta $ appropriately leads to FSHE giving a markedly superior fit to experimental measurements of the structure factor than obtained using the SHE ($\beta =1$) for a number of crystalline materials. The improved fit to the data provided by the fractional partial differential equation prompts our investigation of a FPFC model based on the fractional free energy functional. It is shown that the FSHE is well-posed and exhibits the same type of pattern formation behaviour as the SHE, which is crucial for the success of the PFC model, independently of the fractional exponent $\beta $. This means that the FPFC model inherits the early successes of the FPC model such as physically realistic predictions of the phase diagram etc. and, therefore, provides a viable alternative to the classical PFC model. While the salient features of PFC and FPFC are identical, we expect more subtle features to differ. The prediction of grain boundary energy arising from a mismatch in orientation across a material interface is another notable success of the PFC model. The grain boundary energy can be evaluated numerically from the PFC model and compared with experimental measurements. The grain boundary energy is a derived quantity and is more sensitive to the nuances of the model. We compare the predictions obtained using the PFC and FPFC models with experimental observations of the grain boundary energy for several materials. It is observed that the FPFC model gives superior agreement with the experimental observation than those obtained using the classical PFC model, especially when the mismatch in orientation becomes larger.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emran Tohidi ◽  
M. M. Ezadkhah ◽  
S. Shateyi

This paper presents a computational approach for solving a class of nonlinear Volterra integro-differential equations of fractional order which is based on the Bernoulli polynomials approximation. Our method consists of reducing the main problems to the solution of algebraic equations systems by expanding the required approximate solutions as the linear combination of the Bernoulli polynomials. Several examples are given and the numerical results are shown to demonstrate the efficiency of the proposed method.


2000 ◽  
Vol 2000.4 (0) ◽  
pp. 249-250
Author(s):  
Hiroyuki FURUKAWA ◽  
Takashi WATANABE ◽  
Ikuo NAKAMURA

1985 ◽  
Vol 7 (2) ◽  
pp. 105-110
Author(s):  
N Palaniandavar ◽  
N Kanniah ◽  
F D Gnanam ◽  
P Ramaswamy

2021 ◽  
Vol 13 (3) ◽  
pp. 715-732
Author(s):  
A. Devi ◽  
M. Jakhar

In this work, a modified decomposition method namely Sumudu-Adomian Decomposition Method (SADM) is implemented to find the exact and approximate solutions of fractional order telegraph equations. The derivatives of fractional-order are expressed in terms of caputo operator. Some numerical examples are illustrated to examine the efficiency of the proposed technique. Solutions of fractional order telegraph equations are obtained in the form of a series solution. It is observed that the solutions of fractional order telegraph equations converge towards the solution of an integer-order problem, which confirmed the reliability of the suggested method.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 324 ◽  
Author(s):  
Kai Diethelm ◽  
Roberto Garrappa ◽  
Martin Stynes

The solution of fractional-order differential problems requires in the majority of cases the use of some computational approach. In general, the numerical treatment of fractional differential equations is much more difficult than in the integer-order case, and very often non-specialist researchers are unaware of the specific difficulties. As a consequence, numerical methods are often applied in an incorrect way or unreliable methods are devised and proposed in the literature. In this paper we try to identify some common pitfalls in the use of numerical methods in fractional calculus, to explain their nature and to list some good practices that should be followed in order to obtain correct results.


Sign in / Sign up

Export Citation Format

Share Document