scholarly journals Numerical Solution of Nonlinear Fractional Volterra Integro-Differential Equations via Bernoulli Polynomials

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emran Tohidi ◽  
M. M. Ezadkhah ◽  
S. Shateyi

This paper presents a computational approach for solving a class of nonlinear Volterra integro-differential equations of fractional order which is based on the Bernoulli polynomials approximation. Our method consists of reducing the main problems to the solution of algebraic equations systems by expanding the required approximate solutions as the linear combination of the Bernoulli polynomials. Several examples are given and the numerical results are shown to demonstrate the efficiency of the proposed method.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Yongwen Wu ◽  
Lilun Zhang

A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Khadijeh Sadri ◽  
Kamyar Hosseini ◽  
Dumitru Baleanu ◽  
Ali Ahmadian ◽  
Soheil Salahshour

AbstractThe shifted Chebyshev polynomials of the fifth kind (SCPFK) and the collocation method are employed to achieve approximate solutions of a category of the functional equations, namely variable-order time-fractional weakly singular partial integro-differential equations (VTFWSPIDEs). A pseudo-operational matrix (POM) approach is developed for the numerical solution of the problem under study. The suggested method changes solving the VTFWSPIDE into the solution of a system of linear algebraic equations. Error bounds of the approximate solutions are obtained, and the application of the proposed scheme is examined on five problems. The results confirm the applicability and high accuracy of the method for the numerical solution of fractional singular partial integro-differential equations.


Author(s):  
Mohamed M. Khader

AbstractThis paper is devoted to introduce a numerical treatment using the generalized Adams-Bashforth-Moulton method for some of the variable-order fractional modeling dynamics problems, such as Riccati and Logistic differential equations. The fractional derivative is described in Caputo variable-order fractional sense. The obtained numerical results of the proposed models show the simplicity and efficiency of the proposed method. Moreover, the convergence order of the method is also estimated numerically.


2021 ◽  
Vol 5 (3) ◽  
pp. 70
Author(s):  
Esmail Bargamadi ◽  
Leila Torkzadeh ◽  
Kazem Nouri ◽  
Amin Jajarmi

In this paper, by means of the second Chebyshev wavelet and its operational matrix, we solve a system of fractional-order Volterra–Fredholm integro-differential equations with weakly singular kernels. We estimate the functions by using the wavelet basis and then obtain the approximate solutions from the algebraic system corresponding to the main system. Moreover, the implementation of our scheme is presented, and the error bounds of approximations are analyzed. Finally, we evaluate the efficiency of the method through a numerical example.


2018 ◽  
Vol 20 ◽  
pp. 02001
Author(s):  
M. Razzaghi

In this paper, a new numerical method for solving the fractional differential equations with boundary value problems is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann-Liouville fractional integral operator for hybrid functions is given. This operator is then utilized to reduce the solution of the boundary value problems for fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


2021 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Monireh Nosrati Sahlan ◽  
Hojjat Afshari ◽  
Jehad Alzabut ◽  
Ghada Alobaidi

In this paper, fractional-order Bernoulli wavelets based on the Bernoulli polynomials are constructed and applied to evaluate the numerical solution of the general form of Caputo fractional order diffusion wave equations. The operational matrices of ordinary and fractional derivatives for Bernoulli wavelets are set via fractional Riemann–Liouville integral operator. Then, these wavelets and their operational matrices are utilized to reduce the nonlinear fractional problem to a set of algebraic equations. For solving the obtained system of equations, Galerkin and collocation spectral methods are employed. To demonstrate the validity and applicability of the presented method, we offer five significant examples, including generalized Cattaneo diffusion wave and Klein–Gordon equations. The implementation of algorithms exposes high accuracy of the presented numerical method. The advantage of having compact support and orthogonality of these family of wavelets trigger having sparse operational matrices, which reduces the computational time and CPU requirements.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 275-283
Author(s):  
Kubra Bicer ◽  
Mehmet Sezer

In this paper, a matrix method is developed to solve quadratic non-linear differential equations. It is assumed that the approximate solutions of main problem which we handle primarily, is in terms of Bernoulli polynomials. Both the approximate solution and the main problem are written in matrix form to obtain the solution. The absolute errors are applied to numeric examples to demonstrate efficiency and accuracy of this technique. The obtained tables and figures in the numeric examples show that this method is very sufficient and reliable for solution of non-linear equations. Also, a formula is utilized based on residual functions and mean value theorem to seek error bounds.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


Sign in / Sign up

Export Citation Format

Share Document