diffusive processes
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiaxin Li ◽  
Ying Li ◽  
Pei-Chao Cao ◽  
Minghong Qi ◽  
Xu Zheng ◽  
...  

AbstractThe reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.


Author(s):  
Eric Herbst

The chemistry that occurs in interstellar clouds consists of both gas-phase processes and reactions on the surfaces of dust grains, the latter particularly on and in water-dominated ice mantles in cold clouds. Some of these processes, especially at low temperature, are very unusual by terrestrial standards. For example, in the gas-phase, two-body association reactions form a metastable species known as a complex, which is then stabilized by the emission of radiation under low-density conditions, especially at low temperatures. In the solid phase, it has been thought that the major process for surface reactions is diffusive in nature, occurring when two species undergoing random walks collide with each other on a surface that has both potential wells and intermediate barriers. There is experimental evidence for this process, although very few rates at low interstellar temperatures are well measured. Moreover, since dust particles are discrete, modeling has to take account that reactant pairs are on the same grain, a problem that can be treated using stochastic approaches. In addition, it has been shown more recently that surface reactions can occur more rapidly if they undergo any of a number of non-diffusive processes including so-called three-body mechanisms. There is some experimental support for this hypothesis. These and other unusual gaseous and solid-state processes will be discussed from the theoretical and experimental points of view, and their possible role in the synthesis of organic molecules in interstellar clouds explained. In addition, their historical development will be reviewed.


Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


2021 ◽  
Vol 22 (14) ◽  
pp. 7465
Author(s):  
Wera Di Cianni ◽  
María de la Mata ◽  
Francisco J. Delgado ◽  
Giovanni Desiderio ◽  
Sergio I. Molina ◽  
...  

Multiphoton photoreduction of photosensitive metallic precursors via direct laser writing (DLW) is a promising technique for the synthesis of metallic structures onto solid substrates at the sub-micron scale. DLW triggered by a two photon absorption process is done using a femtosecond NIR laser (λ = 780 nm), tetrachloroauric acid (HAuCl4) as a gold precursor, and isinglass as a natural hydrogel matrix. The presence of a polymeric, transparent matrix avoids unwanted diffusive processes acting as a network for the metallic nanoparticles. After the writing process, a bath in deionized water removes the gold precursor ions and eliminates the polymer matrix. Different aspects underlying the growth of the gold nanostructures (AuNSs) are here investigated to achieve full control on the size and density of the AuNSs. Writing parameters (laser power, exposure time, and scanning speed) are optimized to control the patterns and the AuNSs size. The influence of a second bath containing Au3+ to further control the size and density of the AuNSs is also investigated, observing that these AuNSs are composed of individual gold nanoparticles (AuNPs) that grow individually. A fine-tuning of these parameters leads to an important improvement of the created structures’ quality, with a fine control on size and density of AuNSs.


2021 ◽  
Vol 11 (13) ◽  
pp. 5775
Author(s):  
Mirco Grosse ◽  
Burkhardt Schillinger ◽  
Anders Kaestner

In situ neutron radiography experiments can provide information about diffusive processes and the kinetics of chemical reactions. The paper discusses requirements for such investigations. As examples of the zirconium alloy Zircaloy-4, the hydrogen diffusion, the hydrogen uptake during high-temperature oxidation in steam, and the reaction in nitrogen/steam and air/steam atmospheres, results of in situ neutron radiography investigations are reviewed, and their benefit is discussed.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ashleigh C. Myall ◽  
Robert L. Peach ◽  
Andrea Y. Weiße ◽  
Siddharth Mookerjee ◽  
Frances Davies ◽  
...  

AbstractHospitals constitute highly interconnected systems that bring into contact an abundance of infectious pathogens and susceptible individuals, thus making infection outbreaks both common and challenging. In recent years, there has been a sharp incidence of antimicrobial-resistance amongst healthcare-associated infections, a situation now considered endemic in many countries. Here we present network-based analyses of a data set capturing the movement of patients harbouring antibiotic-resistant bacteria across three large London hospitals. We show that there are substantial memory effects in the movement of hospital patients colonised with antibiotic-resistant bacteria. Such memory effects break first-order Markovian transitive assumptions and substantially alter the conclusions from the analysis, specifically on node rankings and the evolution of diffusive processes. We capture variable length memory effects by constructing a lumped-state memory network, which we then use to identify individually import wards and overlapping communities of wards. We find these wards align closely to known hotspots of transmission and commonly followed pathways patients. Our framework provides a means to focus infection control efforts and cohort outbreaks of healthcare-associated infections.


2021 ◽  
Author(s):  
Alexander Prechtel ◽  
Simon Zech ◽  
Alice Lieu ◽  
Raphael Schulz ◽  
Nadja Ray

<div class="description js-mathjax"> <p>Key functions of soils, such as permeability or habitat for microorganisms, are determined by structures at the microaggregate scale. The evolution of elemental distributions and dynamic processes can often not be assessed experimentally. So mechanistic models operating at the pore scale are needed.<br />We consider the complex coupling of biological, chemical, and physical processes in a hybrid discrete-continuum modeling approach. It integrates dynamic wetting (liquid) and non-wetting (gas) phases including biofilms, diffusive processes for solutes, mobile bacteria transforming into immobile biomass, and ions which are prescribed by means of partial differential equations. Furthermore the growth of biofilms as, e.g., mucilage exuded by roots, or the distribution of particulate organic matter in the system, is incorporated in a cellular automaton framework (CAM) presented in [1, 2]. It also allows for structural changes of the porous medium itself (see, e.g. [3]). As the evolving computational domain leads to discrete discontinuities, we apply the local discontinuous Galerkin (LDG) method for the transport part. Mathematical upscaling techniques incorporate the information from the pore to the macroscale [1,4].<br />The model is applied for two research questions: We model the incorporation and turnover of particulate OM influencing soil aggregation, including ‘gluing’ hotspots, and show scenarios varying of OM input, turnover, or particle size distribution. <br />Second, we quantify the effective diffusivity on 3D geometries from CT scans of a loamy and a sandy soil. Conventional models cannot account for natural pore geometries and varying phase properties. Upscaling allows also to quantify how root exudates (mucilage) can significantly alter the macroscopic soil hydraulic properties.</p> </div> <div id="field-23"> <p>[1]  Ray, Rupp, Prechtel (2017). AWR (107), 393-404.<br />[2] Rupp, Totsche, Prechtel, Ray (2018). Front. Env. Sci. (6) 96.<br />[3] Zech, Dultz, Guggenberger, Prechtel, Ray (2020). Appl. Clay Sci. 198, 105845.<br />[4] Ray, Rupp, Schulz, Knabner (2018). TPM 124(3), 803-824.</p> </div>


Author(s):  
S. V. Bobyr

The phase transformations in alloyed iron-carbon alloys is largely related to diffusion of components, foremost to the carbon. For the analysis of diffusive processes in alloy steels, it is possible to use the mathematical methods of non-equilibrium thermodynamics. The equation for the diffusive fluxes of the system contains unknown in general case of coefficients activity of elements and vacancies, and their derivatives for to the concentrations, that extraordinarily makes it difficult being of values of cross coefficients. In the article a non-equilibrium thermodynamics methodology of calculation of diffusive fluxes at presence of two phases in alloy steels is described. It allows one to calculate both direct- and cross coefficients in the Onsager equations. Formulas for calculation of thermodynamics forces in the alloy steel – for iron, alloying element of substitution – chrome, of element of introduction – carbon and vacancies, are presented. Common expressions are suggested for calculation of cross-factors, motive forces and fluxes in the Onsager’s equations for a multicomponent thermodynamic system. The example of using the developed model to find changes in concentrations and diffusion fluxes over time is given. For the model system used, it was established that at the stage of predominant diffusion of carbon in the alloy steel, cementite inclusions with a size of about 18 nm are formed rather quickly (within ~ 200 s). The technique developed in the article allows one to perform diffusion kinetics calculations in multicomponent thermodynamic systems, which are also iron-carbon alloys and to control the size of the phases formed, for example, of carbide nanoparticles.


2021 ◽  
Author(s):  
Sebastien Carretier ◽  
Laure Guerit ◽  
Rebekah Harries ◽  
Vincent Regard ◽  
Pierre Maffre ◽  
...  

<p>River sediment grains are transported and stored episodically in different reservoirs (terraces, alluvial fans, foreland basin, etc.). The residence time of sediment grains in each reservoir has important implications for the paleo-environmental interpretation established from these grains, and their stratigraphic record, as well as for soil contamination, when these grains come from contaminated sources. The recycling of old sediments, via erosion of an old reservoir (e.g. foreland basin erosion), is a known problem. What is less well recognised is that the recycling of a minority of very old grains can strongly bias the average residence time of a grain population deposited in a stratum. In this case, the time-dependent paleo-environmental properties of a population of grains, such as the degree of weathering, or the concentration of cosmogenic isotopes, can then be biased. Several lines of evidence for this phenomenon, inherent to fluvial transport processes, have emerged, though reconstructing the residence time distribution of a grain population over long times (>>ka) remains a challenge. Using a landscape evolution model coupled with grain transport, we show that at the scale of a piedmont, grains can remain several hundred ka before being evacuated. At the scale of a river in Northern Chile, we used the concentration of 10Be in individual pebbles to show that some pebbles remain stored for several tens of ka before being evacuated to the river outlet. In addition, the distribution of residence times can also provide information on the nature of the diffusive processes that control the fluxes of exported sediment. These results suggest that the characterisation of grain-by-grain properties in a grain population can not only help to avoid possible interpretation biases but also provide constraints for models of long-term fluvial sediment outfluxes.  </p>


Sign in / Sign up

Export Citation Format

Share Document