scholarly journals Damping of inter-area oscillations by combining control strategies in hydropower plants

Author(s):  
Daniel Fank ◽  
Herwig Renner

AbstractThis paper examines how the damping capability can be improved if inter-area oscillations occur by combining control strategies in hydropower plants. First, the control challenges of hydropower plants, such as the water hammer effect, are discussed. In a single-machine infinite bus system (SMIBS), the use of a Power System Stabilizer (PSS) in the generator excitation and in the governor control path as well as the combination of both strategies are examined for their effectiveness in terms of their damping capability. In addition, these results are compared with an optimal state space controller with an observer as a damping element. The Heffron-Phillips model is the design model for the PSS as well as for the model-based controller. The verification of the damping capability through the PSS variants is evaluated by using a three-machine model in the time domain and by using modal analysis.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5644
Author(s):  
Predrag Marić ◽  
Ružica Kljajić ◽  
Harold R. Chamorro ◽  
Hrvoje Glavaš

One of the main characteristics of power systems is keeping voltages within given limits, done by implementing fast automatic voltage regulators (AVR), which can raise generator voltage (i.e., excitation voltage) in a short time to ceiling voltage limits while simultaneously affecting the damping component of the synchronous generator electromagnetic torque. The efficient way to increase damping in the power system is to implement a power system stabilizer (PSS) in the excitation circuit of the synchronous generator. This paper proposes an enhanced algorithm for PSS tuning in the multimachine system. The algorithm is based on the analysis of system participation factors and the pole placement method while respecting the time domain behavior of the system after being subdued with a small disturbance. The observed time-domain outputs, namely active power, speed, and rotor angle of the synchronous generator, have been classified and validated with proposed weight functions based on the minimal square deviation between the initial values in a steady-state and all sampled values during the transitional process. The system weight function proposed in this algorithm comprises s-domain and time-domain indices and represents a novel approach for PSS tuning. The proposed algorithm performance is validated on IEEE 14-bus system with a detailed presentation of the results in a graphical and table form.


2013 ◽  
Vol 62 (1) ◽  
pp. 141-152 ◽  
Author(s):  
K. Abdul Hameed ◽  
S. Palani

Abstract In this paper, a novel bacterial foraging algorithm (BFA) based approach for robust and optimal design of PID controller connected to power system stabilizer (PSS) is proposed for damping low frequency power oscillations of a single machine infinite bus bar (SMIB) power system. This paper attempts to optimize three parameters (Kp, Ki, Kd) of PID-PSS based on foraging behaviour of Escherichia coli bacteria in human intestine. The problem of robustly selecting the parameters of the power system stabilizer is converted to an optimization problem which is solved by a bacterial foraging algorithm with a carefully selected objective function. The eigenvalue analysis and the simulation results obtained for internal and external disturbances for a wide range of operating conditions show the effectiveness and robustness of the proposed BFAPSS. Further, the time domain simulation results when compared with those obtained using conventional PSS and Genetic Algorithm (GA) based PSS show the superiority of the proposed design.


Sign in / Sign up

Export Citation Format

Share Document