Using machine learning method on calculation of boundary layer height

Author(s):  
Rongsheng Jiang ◽  
Kaihui Zhao
2021 ◽  
Author(s):  
Ruben Barragan ◽  
Francisco Molero ◽  
Begoña Artiñano

<p>It is well known that anthropogenic aerosols deteriorate air quality increasing public health risk. Therefore their characterization must be one of the main objectives in atmosphere studies, although the heterogeneous distribution of the aerosols in the atmosphere hampers it. Anthropogenic aerosols are mostly concentrated within the planetary boundary layer (PBL) that extends from the surface up to a variable height that usually coincides with the presence of a temperature inversion. The PBL height, then, is affected by the radiation emitted by the surface causing turbulence and evolving along the day and in this way limiting the vertical mixing of the air pollutants generated near the surface. Therefore, it can be assumed that the lower the PBL height, the higher the aerosol concentration from local sources. Lidars have demonstrated their capabilities to study the aerosol vertical distribution and their spatio-temporal evolution can provide very complete information on both aerosol spatial distribution and their characterization. Their wavelength dependence of the backscatter and extinction coefficients allows for a more detailed discrimination of aerosol types. On the other hand, ceilometers are capable of providing continuous aerosol vertical profiles with good spatial resolution and a large range, besides ceilometers operating at 1064nm can provide backscatter and extinction coefficients as Lidar instruments. The present work has been carried out in the Madrid metropolitan area located in the center of the Iberian Peninsula, which counts with a population of nearly 6 million inhabitants and a car fleet of almost 3 million vehicles. Its main objective is the assessment of the planetary boundary layer height by means of machine learning techniques using ceilometer signals and also its validation by using multiwavelength lidar measurements and radiosoundings. Typical techniques as the wavelet and the gradient methods are unable to detect the PBL in cases with presence of low clouds or residual layers. For that purpose, several profiles stored in the Madrid database, covering different synoptic situations as long-range transport of aerosols and clean-atmosphere situations are used. These profiles have been performed by the CHM15k Nimbus ceilometer deployed next to the MDR-CIEMAT ACTRIS station (40.4565ºN, 3.7257ºW, 663 m a.s.l.), equipped with a Lidar-Raman instrument (integrated in EARLINET-ACTRIS) and located in the Madrid North-West city outskirts.</p><p> </p><p><strong><em>Acknowledgements </em></strong></p><p>This work was supported by H2020 programme from the European Union (grant 654109, ACTRIS-2 project), the Spanish Ministry of Economy and Competitivity (CRISOL, CGL2017-85344-R) and Madrid Regional Government (TIGAS-CM, Y2018/EMT-5177).  </p>


2021 ◽  
pp. 105962
Author(s):  
Gregori de Arruda Moreira ◽  
Guadalupe Sánchez-Hernández ◽  
Juan Luis Guerrero-Rascado ◽  
Alberto Cazorla ◽  
Lucas Alados-Arboledas

2021 ◽  
Vol 14 (6) ◽  
pp. 4335-4353
Author(s):  
Thomas Rieutord ◽  
Sylvain Aubert ◽  
Tiago Machado

Abstract. The atmospheric boundary layer height (BLH) is a key parameter for many meteorological applications, including air quality forecasts. Several algorithms have been proposed to automatically estimate BLH from lidar backscatter profiles. However recent advances in computing have enabled new approaches using machine learning that are seemingly well suited to this problem. Machine learning can handle complex classification problems and can be trained by a human expert. This paper describes and compares two machine-learning methods, the K-means unsupervised algorithm and the AdaBoost supervised algorithm, to derive BLH from lidar backscatter profiles. The K-means for Atmospheric Boundary Layer (KABL) and AdaBoost for Atmospheric Boundary Layer (ADABL) algorithm codes used in this study are free and open source. Both methods were compared to reference BLHs derived from colocated radiosonde data over a 2-year period (2017–2018) at two Météo-France operational network sites (Trappes and Brest). A large discrepancy between the root-mean-square error (RMSE) and correlation with radiosondes was observed between the two sites. At the Trappes site, KABL and ADABL outperformed the manufacturer's algorithm, while the performance was clearly reversed at the Brest site. We conclude that ADABL is a promising algorithm (RMSE of 550 m at Trappes, 800 m for manufacturer) but has training issues that need to be resolved; KABL has a lower performance (RMSE of 800 m at Trappes) than ADABL but is much more versatile.


2019 ◽  
Author(s):  
Hironori Takemoto ◽  
Tsubasa Goto ◽  
Yuya Hagihara ◽  
Sayaka Hamanaka ◽  
Tatsuya Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document