anthropogenic aerosols
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 184)

H-INDEX

62
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Armineh Barkhordarian ◽  
David Marcolino Nielsen ◽  
Johanna Baehr

Abstract Over the last decade, the northeast Pacific (NP) experienced strong marine heatwaves (MHWs) that produced devastating marine ecological impacts and received major societal concerns. Here, we assess the link between the well-mixed greenhouse gas (GHG) forcing and the occurrence probabilities of the duration and intensity of the NP MHWs. To begin with, we apply attribution technique on the SST time series, and detect a region of systematically and externally-forced SST increase -- the long-term warming pool -- co-located with the past notably Blob-like SST anomalies. The anthropogenic signal has recently emerged from the natural variability of SST over the warming pool, which we attribute primarily to increased GHG concentrations, with anthropogenic aerosols playing a secondary role. With extreme event attribution technique, we further show that GHG forcing is a necessary, but not a sufficient, causation for the multi-year persistent MHW events in the current climate, such as that happened in 2019/2020 over the warming pool. However, the occurrence of the 2019/2020 MHW was extremely unlikely in the absence of GHG forcing. Thus, as GHG emissions continue to firmly rise, it is very likely that GHG forcings will become a sufficient cause for events of the magnitude of the 2019/2020 record event.


2022 ◽  
Author(s):  
Kai Zhang ◽  
Wentao Zhang ◽  
Hui Wan ◽  
Philip J. Rasch ◽  
Steven J. Ghan ◽  
...  

Abstract. The effective radiative forcing of anthropogenic aerosols (ERFaer) is an important measure of the anthropogenic aerosol effects simulated by a global climate model. Here we analyze ERFaer simulated by the E3SMv1 atmosphere model using both century-long free-running atmosphere-land simulations and short nudged simulations. We relate the simulated ERFaer to characteristics of the aerosol composition and optical properties, and evaluate the relationships between key aerosol and cloud properties. In terms of historical changes from the year 1870 to 2014, our results show that the global mean anthropogenic aerosol burden and optical depth increase during the simulation period as expected, but the regional averages show large differences in the temporal evolution. The largest regional differences are found in the emission-induced evolution of the burden and optical depth of the sulfate aerosol: a strong decreasing trend is seen in the Northern Hemisphere high-latitude region after around 1970, while a continued increase is simulated in the tropics. Consequently, although the global mean anthropogenic aerosol burden and optical depth increase from 1870 to 2014, the ERFaer magnitude does not increase after around year 1970. The relationships between key aerosol and cloud properties (relative changes between preindustrial and present-day conditions) also show evident changes after 1970, diverging from the linear relationships exhibited for the period from 1870 to 2014. The ERFaer in E3SMv1 is relatively large compared to the recently published multi-model estimates; the primary reason is the large indirect aerosol effect (i.e., through aerosol-cloud interactions). Compared to other models, E3SMv1 features a stronger sensitivity of the cloud droplet effective radius to changes in the cloud droplet number concentration. Large sensitivity is also seen in the liquid cloud optical depth, which is determined by changes in both the effective radius and liquid water path. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 are found to have a strong correlation, as the evolution of anthropogenic sulfate aerosols affects both the liquid cloud formation and the homogeneous ice nucleation in cirrus clouds. The ERFaer estimates in E3SMv1 for the shortwave and longwave components are sensitive to the parameterization changes in both liquid and ice cloud processes. When the parameterization of ice cloud processes is modified, the top-of-atmosphere forcing changes in the shortwave and longwave components largely offset each other, so the net effect is negligible. This suggests that, to reduce the magnitude of the net ERFaer, it would be more effective to reduce the anthropogenic aerosol effect through liquid or mixed-phase clouds.


2021 ◽  
Vol 21 (24) ◽  
pp. 18609-18627
Author(s):  
Jie Zhang ◽  
Kalli Furtado ◽  
Steven T. Turnock ◽  
Jane P. Mulcahy ◽  
Laura J. Wilcox ◽  
...  

Abstract. The Earth system models (ESMs) that participated in the sixth Coupled Model Intercomparison Project (CMIP6) tend to simulate excessive cooling in surface air temperature (TAS) between 1960 and 1990. The anomalous cooling is pronounced over the Northern Hemisphere (NH) midlatitudes, coinciding with the rapid growth of anthropogenic sulfur dioxide (SO2) emissions, the primary precursor of atmospheric sulfate aerosols. Structural uncertainties between ESMs have a larger impact on the anomalous cooling than internal variability. Historical simulations with and without anthropogenic aerosol emissions indicate that the anomalous cooling in the ESMs is attributed to the higher aerosol burden in these models. The aerosol forcing sensitivity, estimated as the outgoing shortwave radiation (OSR) response to aerosol concentration changes, cannot well explain the diversity of pothole cooling (PHC) biases in the ESMs. The relative contributions to aerosol forcing sensitivity from aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs) can be estimated from CMIP6 simulations. We show that even when the aerosol forcing sensitivity is similar between ESMs, the relative contributions of ARI and ACI may be substantially different. The ACI accounts for between 64 % and 87 % of the aerosol forcing sensitivity in the models and is the main source of the aerosol forcing sensitivity differences between the ESMs. The ACI can be further decomposed into a cloud-amount term (which depends linearly on cloud fraction) and a cloud-albedo term (which is independent of cloud fraction, to the first order), with the cloud-amount term accounting for most of the inter-model differences.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 153-170
Author(s):  
Anil Kumar Satoliya ◽  

Long term satellite observations over more than one decade of several aerosols parameters, i.e., AOD550 nm, AE, COT, UV-AI and ASA have been analyzed to describe their overall monthly and seasonally climatology over least explored region of Western Indian sites. It has been found that maximum aerosols loading characteristics of coarse aerosols of dust mineral origin in May and minimum aerosols values in December month at selected arid sites and semi-arid site. Aerosol variables in noon hours seem to their two time higher values than their fore-noon magnitude at all selected places. Observed findings may be interpreted in view of mixed effect of increasing accumulation of regional and local aerosols emission activities. An significant long term trend in aerosols variable of positive values of more 47% in AE and 25% in AOD 550 nm itself would be indicated due to the extra-enhancement in human made activities of more than 10% in term of population growth, population density, transportation vehicles, industries as the enhancement in local anthropogenic aerosols production sources specially over western arid sites. Thus, the abundance of fine size of anthropogenic aerosols is found to be systematically enhanced in the last decade, which is serious concern to both climate and air pollution change aspect over western Indian region also in similar to other Indian regions.


2021 ◽  
Vol 21 (23) ◽  
pp. 17715-17726
Author(s):  
Liang Xu ◽  
Xiaohuan Liu ◽  
Huiwang Gao ◽  
Xiaohong Yao ◽  
Daizhou Zhang ◽  
...  

Abstract. Long-range transport of anthropogenic air pollutants from East Asia can affect the downwind marine air quality during spring and winter. Long-range transport of continental air pollutants and their interaction with sea salt aerosol (SSA) significantly modify the radiative forcing of marine aerosols and influence ocean biogeochemical cycling. Previous studies poorly characterize variations of aerosol particles along with air mass transport from the continental edge to the remote ocean. Here, the research ship R/V Dongfanghong 2 traveled from the eastern China seas (ECS) to the northwestern Pacific Ocean (NWPO) to understand what and how air pollutants were transported from the highly polluted continental air to clean marine air in spring. A transmission electron microscope (TEM) was used to find the long-range transported anthropogenic particles and the possible Cl-depletion phenomenon of SSA in marine air. Anthropogenic aerosols (e.g., sulfur (S)-rich, S-soot, S-metal/fly ash, organic matter (OM)-S, and OM coating particles) were identified and dramatically declined from 87 % to 8 % by number from the ECS to remote NWPO. For the SSA aging, 87 % of SSA particles in the ECS were identified as fully aged, while the proportion of fully aged SSA particles in the NWPO decreased to 29 %. Our results highlight that anthropogenic acidic gases in the troposphere (e.g., SO2, NOx, and volatile organic compounds) could be transported to remote marine air and exert a significant impact on aging of SSA particles in the NWPO. The study shows that anthropogenic particles and gases from East Asia significantly perturb different aerosol chemistry from coastal to remote marine air. More attention should be given to the modification of SSA particles in remote marine areas due to the influence of anthropogenic gaseous pollutants.


Author(s):  
Timothy DelSole ◽  
Michael K. Tippett

Abstract. This paper proposes a criterion for deciding whether climate model simulations are consistent with observations. Importantly, the criterion accounts for correlations in both space and time. The basic idea is to fit each multivariate time series to a vector autoregressive (VAR) model and then test the hypothesis that the parameters of the two models are equal. In the special case of a first-order VAR model, the model is a linear inverse model (LIM) and the test constitutes a difference-in-LIM test. This test is applied to decide whether climate models generate realistic internal variability of annual mean North Atlantic sea surface temperature. Given the disputed origin of multidecadal variability in the North Atlantic (e.g., some studies argue it is forced by anthropogenic aerosols, while others argue it arises naturally from internal variability), the time series are filtered in two different ways appropriate to the two driving mechanisms. In either case, only a few climate models out of three dozen are found to generate internal variability consistent with observations. In fact, it is shown that climate models differ not only from observations, but also from each other, unless they come from the same modeling center. In addition to these discrepancies in internal variability, other studies show that models exhibit significant discrepancies with observations in terms of the response to external forcing. Taken together, these discrepancies imply that, at the present time, climate models do not provide a satisfactory explanation of observed variability in the North Atlantic.


2021 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Prashant Chavan ◽  
Akash Joshi ◽  
Sunil Sonbawne ◽  
Asutosh Acharya ◽  
...  

Abstract. Atmospheric concentrations of South Asian anthropogenic aerosols and their transport play a key role in the regional hydrological cycle. Here, we use the ECHAM6-HAMMOZ chemistry-climate model to show the structure and implications of the transport pathways of these aerosols during spring. Our simulations indicate that large amounts of anthropogenic aerosols are transported from South Asia to the North Indian Ocean (the Arabian Sea and North Bay of Bengal). These aerosols are then lifted into the upper troposphere and lower stratosphere (UTLS) by the convection over the Arabian Sea and Bay of Bengal. In the UTLS, they are further transported to the southern hemisphere (30–40° S) and downward into the troposphere by the secondary circulation induced by the aerosol changes. The carbonaceous aerosols are also transported to the Arctic and Antarctic producing local heating (0.002–0.05 K d−1). The presence of anthropogenic aerosols causes negative radiative forcing (RF) at the TOA (0.90 ± 0.089 W m−2) and surface (−5.87 ± 0.31 W m−2) and atmospheric warming (+4.96 ± 0.24 W m−2) over South Asia (60° E–90° E, 8° N–23° N), except over the Indo-Gangetic plain (75° E–83° E, 23° N–30° N) where RF at the TOA is positive (+1.27 ± 0.16 W m−2) due to large concentrations of absorbing aerosols. The carbonaceous aerosols produced in-atmospheric heating along the aerosol column extending from the boundary layer to the UTLS (0.01 to 0.3 K d−1) and in the stratosphere globally (0.002 to 0.012 K d−1). The heating of the troposphere increases water vapor concentrations, which are then transported from the highly convective region (i.e. the Arabian Sea) to the UTLS (increasing water vapor by 0.02–0.06 ppmv).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kerry Emanuel

AbstractHistorical records of Atlantic hurricane activity, extending back to 1851, show increasing activity over time, but much or all of this trend has been attributed to lack of observations in the early portion of the record. Here we use a tropical cyclone downscaling model driven by three global climate analyses that are based mostly on sea surface temperature and surface pressure data. The results support earlier statistically-based inferences that storms were undercounted in the 19th century, but in contrast to earlier work, show increasing tropical cyclone activity through the period, interrupted by a prominent hurricane drought in the 1970s and 80 s that we attribute to anthropogenic aerosols. In agreement with earlier work, we show that most of the variability of North Atlantic tropical cyclone activity over the last century was directly related to regional rather than global climate change. Most metrics of tropical cyclones downscaled over all the tropics show weak and/or insignificant trends over the last century, illustrating the special nature of North Atlantic tropical cyclone climatology.


Sign in / Sign up

Export Citation Format

Share Document