Real-time spatial processing of sounds for music, multimedia and interactive human-computer interfaces

1999 ◽  
Vol 7 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Jean-Marc Jot
2021 ◽  
Author(s):  
Sai Chaitanya Cherukumilli

Human-computer interaction systems have been providing new ways for amateurs to compose music using traditional computer peripherals as well as gesture interfaces. Vibro-tactile patterns, which are a vibrational art form similar to auditory music, can also be composed using human-computer interfaces. This thesis discusses the gesture interface system called the Vibro-Motion, which facilitates the composition of vibro-tactile patterns in real-time on an existing tactile sensory substitution system called the Emoti-Chair. The Vibro-Motion allows users to control the pitch, magnitude of the vibration as well as the position of the vibration. A usability evaluation of Vibro-Motion system showed it to be intuitive, comfortable and enjoyable for the participants.


Author(s):  
Tanoy Debnath ◽  
Md. Mahfuz Reza ◽  
Anichur Rahman ◽  
Shahab Band ◽  
Hamid Alinejad Rokny

Emotion recognition defined as identifying human emotion and is directly related to different fields such as human-computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human-robot communi- cation and many more. The purpose of this study is to propose a new facial emotional recognition model using convolutional neural network. Our proposed model, “ConvNet”, detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. This research focuses on the model’s training accuracy in a short number of epoch which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this work focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases, and we test the system’s success by identifying facial expressions in the real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. ConvNet also achieved validation accuracy of 65% to 70% (considering different datasets used for experiments), resulting in a higher classification accuracy compared to other existing models. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN.


2021 ◽  
Author(s):  
Tanoy Debnath ◽  
Md. Mahfuz Reza ◽  
Anichur Rahman ◽  
Shahab S. Band ◽  
Hamid Alinejad-Rokny

Abstract Emotion recognition defined as identifying human emotion and is directly related to different fields such as human-computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human-robot communi- cation and many more. The purpose of this study is to propose a new facial emotional recognition model using convolutional neural network. Our proposed model, “ConvNet”, detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. This research focuses on the model’s training accuracy in a short number of epoch which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this work focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases, and we test the system’s success by identifying facial expressions in the real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. ConvNet also achieved validation accuracy of 65% to 70% (considering different datasets used for experiments), resulting in a higher classification accuracy compared to other existing models. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN.


2021 ◽  
Author(s):  
Sai Chaitanya Cherukumilli

Human-computer interaction systems have been providing new ways for amateurs to compose music using traditional computer peripherals as well as gesture interfaces. Vibro-tactile patterns, which are a vibrational art form similar to auditory music, can also be composed using human-computer interfaces. This thesis discusses the gesture interface system called the Vibro-Motion, which facilitates the composition of vibro-tactile patterns in real-time on an existing tactile sensory substitution system called the Emoti-Chair. The Vibro-Motion allows users to control the pitch, magnitude of the vibration as well as the position of the vibration. A usability evaluation of Vibro-Motion system showed it to be intuitive, comfortable and enjoyable for the participants.


2021 ◽  
Vol 18 (3) ◽  
pp. 1-22
Author(s):  
Charlotte M. Reed ◽  
Hong Z. Tan ◽  
Yang Jiao ◽  
Zachary D. Perez ◽  
E. Courtenay Wilson

Stand-alone devices for tactile speech reception serve a need as communication aids for persons with profound sensory impairments as well as in applications such as human-computer interfaces and remote communication when the normal auditory and visual channels are compromised or overloaded. The current research is concerned with perceptual evaluations of a phoneme-based tactile speech communication device in which a unique tactile code was assigned to each of the 24 consonants and 15 vowels of English. The tactile phonemic display was conveyed through an array of 24 tactors that stimulated the dorsal and ventral surfaces of the forearm. Experiments examined the recognition of individual words as a function of the inter-phoneme interval (Study 1) and two-word phrases as a function of the inter-word interval (Study 2). Following an average training period of 4.3 hrs on phoneme and word recognition tasks, mean scores for the recognition of individual words in Study 1 ranged from 87.7% correct to 74.3% correct as the inter-phoneme interval decreased from 300 to 0 ms. In Study 2, following an average of 2.5 hours of training on the two-word phrase task, both words in the phrase were identified with an accuracy of 75% correct using an inter-word interval of 1 sec and an inter-phoneme interval of 150 ms. Effective transmission rates achieved on this task were estimated to be on the order of 30 to 35 words/min.


Sign in / Sign up

Export Citation Format

Share Document