Kinematics and shear heat pattern of ductile simple shear zones with ‘slip boundary condition’

2015 ◽  
Vol 105 (3) ◽  
pp. 1015-1020 ◽  
Author(s):  
Kieran F. Mulchrone ◽  
Soumyajit Mukherjee
2013 ◽  
Vol 232 (1) ◽  
pp. 174-188 ◽  
Author(s):  
S. Kumar Ranjith ◽  
B.S.V. Patnaik ◽  
Srikanth Vedantam

2005 ◽  
Vol 15 (03) ◽  
pp. 343-374 ◽  
Author(s):  
GUY BAYADA ◽  
NADIA BENHABOUCHA ◽  
MICHÈLE CHAMBAT

A thin micropolar fluid with new boundary conditions at the fluid-solid interface, linking the velocity and the microrotation by introducing a so-called "boundary viscosity" is presented. The existence and uniqueness of the solution is proved and, by way of asymptotic analysis, a generalized micropolar Reynolds equation is derived. Numerical results show the influence of the new boundary conditions for the load and the friction coefficient. Comparisons are made with other works retaining a no slip boundary condition.


Author(s):  
Joris C. G. Verschaeve

By means of the continuity equation of the incompressible Navier–Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.


Author(s):  
Derek C. Tretheway ◽  
Luoding Zhu ◽  
Linda Petzold ◽  
Carl D. Meinhart

This work examines the slip boundary condition by Lattice Boltzmann simulations, addresses the validity of the Navier’s hypothesis that the slip velocity is proportional to the shear rate and compares the Lattice Boltzmann simulations to the experimental results of Tretheway and Meinhart (Phys. of Fluids, 14, L9–L12). The numerical simulation models the boundary condition as the probability, P, of a particle to bounce-back relative to the probability of specular reflection, 1−P. For channel flow, the numerically calculated velocity profiles are consistent with the experimental profiles for both the no-slip and slip cases. No-slip is obtained for a probability of 100% bounce-back, while a probability of 0.03 is required to generate a slip length and slip velocity consistent with the experimental results of Tretheway and Meinhart for a hydrophobic surface. The simulations indicate that for microchannel flow the slip length is nearly constant along the channel walls, while the slip velocity varies with wall position as a results of variations in shear rate. Thus, the resulting velocity profile in a channel flow is more complex than a simple combination of the no-slip solution and slip velocity as is the case for flow between two infinite parallel plates.


Sign in / Sign up

Export Citation Format

Share Document