Changes in circulating blood volume following isoflurane or sevoflurane anesthesia

1993 ◽  
Vol 7 (3) ◽  
pp. 316-324 ◽  
Author(s):  
Hiroshi Hamada ◽  
Masuhiko Takaori ◽  
Ken’ichi Kimura ◽  
Akira Fukui ◽  
Yoshihisa Fujita
2006 ◽  
Vol 291 (1) ◽  
pp. H441-H450 ◽  
Author(s):  
Timofei V. Kondratiev ◽  
Kristina Flemming ◽  
Eivind S. P. Myhre ◽  
Mikhail A. Sovershaev ◽  
Torkjel Tveita

It has been postulated that unsuccessful resuscitation of victims of accidental hypothermia is caused by insufficient tissue oxygenation. The aim of this study was to test whether inadequate O2supply and/or malfunctioning O2extraction occur during rewarming from deep/profound hypothermia of different duration. Three groups of rats ( n = 7 each) were used: group 1 served as normothermic control for 5 h; groups 2 and 3 were core cooled to 15°C, kept at 15°C for 1 and 5 h, respectively, and then rewarmed. In both hypothermic groups, cardiac output (CO) decreased spontaneously by >50% in response to cooling. O2consumption fell to less than one-third during cooling but recovered completely in both groups during rewarming. During hypothermia, circulating blood volume in both groups was reduced to approximately one-third of baseline, indicating that some vascular beds were critically perfused during hypothermia. CO recovered completely in animals rewarmed after 1 h ( group 2) but recovered to only 60% in those rewarmed after 5 h ( group 3), whereas blood volume increased to approximately three-fourths of baseline in both groups. Metabolic acidosis was observed only after 5 h of hypothermia (15°C). A significant increase in myocardial tissue heat shock protein 70 after rewarming in group 3, but not in group 2, indicates an association with the duration of hypothermia. Thus mechanisms facilitating O2extraction function well during deep/profound hypothermia, and, despite low CO, O2supply was not a limiting factor for survival in the present experiments.


1990 ◽  
Vol 122 (4) ◽  
pp. 455-461 ◽  
Author(s):  
San-e Ishikawa ◽  
Toshikazu Saito ◽  
Koji Okada ◽  
Shoichiro Nagasaka ◽  
Takeshi Kuzuya

Abstract. We studied the changes in plasma arginine vasopressin in 5 patients with diabetic ketoacidosis and one patient with non-ketotic hyperosmolar coma who had marked hyperglycemia (36.6 ± 4.6 mmol/l, mean ± sem) and dehydration. Plasma osmolality (Posm) was 342.2 ± 11.4 mOsm/kg H2O, and hematocrit, serum protein, and blood urea nitrogen were also elevated at hospitalization. Circulating blood volume was decreased by approximately 21% as compared with that on day 7. Plasma AVP level was increased to 8.5 ± 1.6 pmol/l at hospitalization. When hyperglycemia was improved by iv infusion of a small dose of insulin plus fluid administration, plasma AVP level promptly decreased to 2.4 ± 0.4 pmol/l within six hours. When plasma AVP level had normalized, Posm was still as high as 305 mOsm/kg H2O, but the loss of circulating blood volume was only 4.2% of the control state. Plasma AVP level was positively correlated with change in hematocrit (plasma AVP = 3.58 + 0.45 · hematocrit, r = 0.468, p < 0.01), serum protein (r = 0.487, p < 0.01), Posm (r = 0.388, p < 0.01), and blood glucose (r = 0.582, p < 0.01). Plasma AVP level was negatively correlated with the change in circulating blood volume (plasma AVP = 3.6 – 0.14 · change in circulating blood volume, r = −0.469, p <0.01). These results indicate that both non-osmotic and osmotic stimuli are involved in the mechanism for AVP release in patients with diabetic coma, and that the non-osmotic control of AVP may contribute to circulating homeostasis, protecting against severe blood volume depletion in diabetic patients suffering from hyperglycemia and dehydration.


1978 ◽  
Vol 235 (6) ◽  
pp. H670-H676 ◽  
Author(s):  
U. Ackermann

The correlation among cardiac output (CO), glomerular filtration rate (GFR), fractional tubular sodium rejection (TFRNa), and renal excretion rates of water and salt was investigated during ischemic blood volume expansion in rats. Initially circulating blood volume was equilibrated isovolemically with a reservoir volume of 6% albumin solution equal to one-third the estimated blood volume. Later the equilibrated reservoir contents were infused intravenously. CO was measured by thermodilution, GFR by inulin clearance. Significant linear correlations existed between GFR and the rates of urine flow (r = 0.90), sodium excretion (r = 0.75) and potassium excretion (r = 0.76) that prevailed 5--10 min after a given GFR change. The increased GFR was highly correlated with CO (r = 0.94), probably correlated with mean central venous pressure (r = 0.45), but not correlated with mean abdominal aortic blood pressure. The correlation between CO and time-delayed (5--10 min) TRFNa was also highly significant (r = 0.98). The saluresis appears to have been caused initially by increased tubular load and subsequently by decreased absolute tubular reabsorption.


2011 ◽  
Vol 44 (5) ◽  
pp. 435-440 ◽  
Author(s):  
Susumu Ookawara ◽  
Masayuki Suzuki ◽  
Sachiko Fukase ◽  
Kaoru Tabei

1968 ◽  
Vol 115 (5) ◽  
pp. 594-598 ◽  
Author(s):  
Fuad J. Dagher ◽  
Alex Panossian ◽  
Farid J.D. Fuleihan

Author(s):  
Javad Rahimipour Anaraki ◽  
Saeed Samet ◽  
Mohamed S. Shehata ◽  
Kris Aubrey-Bassler ◽  
Ebrahim Karami ◽  
...  

2001 ◽  
Vol 20 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Lee Shirland

Because the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) can cause neurologic sequelae with the potential to affect long-term outcomes, its prompt recognition and treatment are essential. Normally, antidiuretic hormone (ADH) is secreted when effective circulating blood volume is decreased. SIADH is marked by secretion of ADH in the presence of effective or normal circulating blood volume. This causes plasma hyponatremia simultaneously with plasma hypo-osmolality and inappropriate hyperosmolality of the urine. This article explains the pathophysiology of the syndrome; describes its diagnosis, clinical course, and treatment; and exemplifies the syndrome with a case study.


1979 ◽  
Vol 236 (2) ◽  
pp. H291-H300 ◽  
Author(s):  
C. F. Rothe ◽  
R. H. Murray ◽  
T. D. Bennett

To estimate the size of the actively circulating blood volume of splenectomized dogs during control conditions and after endotoxin infusion, the pattern of concentration changes of 51Cr-labeled erythrocytes and 125I-labeled albumin was monitored. A dual exponential equation was fitted to the data. The total red blood cell and albumin volumes of distribution were determined from the slow exponential disappearance curves. The active red blood cell and albumin volumes were 89.8 +/- 5.3% and 92.0 +/- 2.0% of the total volumes, respectively. After endotoxin shock (mean arterial blood pressure 49.1 +/- 17.8 mmHg) the active volumes fell to only 60.0 +/- 10.3% and 56.2 +/- 20.0% of the total volumes, respectively. The fast-mixing time constants were similar (3.1 +/- 1.4 min and 2.5 +/- 2.7 min, respectively) and did not change significantly during the endotoxin shock, indicating that the albumin tag mixed into its larger volume of distribution as rapidly as the cells mixed into their indicated volume. We conclude that 1) an active blood volume can be distinguished, 2) it decreases for both red blood cells and albumin in endotoxin shock, and 3) a major part of the "extravascular plasma volume," as estimated by albumin dilution, is in the actively circulating circulation.


Sign in / Sign up

Export Citation Format

Share Document