Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia caused by defects in insulin secretion, insulin reactions, or both. More than one third of diabetic patients have complications in the form of diabetic ulcers, and half are infected, and 15% of these infections require limb amputation. High cost expenditure and risks of microbial resistance to antibiotics also adds the complexity of the problem. The purpose of this literature review is to offer Nano-Oxy, using oxygen in nanoparticle size, as an alternative diabetic ulcer treatment. Literature searching was conducted through online search method. Oxygen therapy has been widely used to treat diabetic ulcers, including hyperbaric oxygen therapy (HOT) and topical oxygen therapy (TOT). Both of them have good results on diabetic ulcer therapy. Oxygen can act as an antimicrobial agent through the activation mechanism of neutrophils and macrophages which play a role in phagocytosis process and ROS regeneration. Nano-Oxy has advantages than the previous therapy, such as it does not cause barotrauma, oxygen poisoning, and low risk of burning. The mechanism of how Nano-Oxy works is similar with the Micro-nanobubbles (MNBs) concept. The negatively charged surface of MNBs can prevent them from aggregating, attracts particles, and help remove debris. MNBs also generate free radicals while shrinking in water, which contribute to its antibacterial effect. In addition, Nano-oxygen technology can be applied externally, but still have effect on the intended target cells. Therefore, Nano-oxygen can be used as a diabetic ulcer therapy to replace the role of antibiotics.