A Constitutive Model for Shear Behavior of Rock Joints Based on Three-Dimensional Quantification of Joint Roughness

2013 ◽  
Vol 46 (6) ◽  
pp. 1513-1537 ◽  
Author(s):  
Jung-Wook Park ◽  
Yong-Ki Lee ◽  
Jae-Joon Song ◽  
Byung-Hee Choi
Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jingyi Cheng ◽  
Hongwei Zhang ◽  
Zhijun Wan

The mechanical properties and permeability evolution of sand-infilled rock joints during the shear process is an important issue in rock engineering, such as it pertains to hydraulic fractures filled with proppant. Shear can disrupt the preexisting hydraulic and mechanical equilibrium conditions, thus affecting fluid flow. In this study, we simulate the shear behavior of rock joints with variable roughness and sand infilling thickness using the discrete element code PFC2D. Rock joint roughness is evaluated by the joint roughness coefficient (JRC), and sand infilling thickness is evaluated by a thickness ratio (i.e., ratio of infill thickness to rock height) ranging from 0.02 to 0.20. The results show that peak shear strength decreases with the thickness ratio in a relation that can be expressed by a hyperbolic function. We also measure the permeability evolution during shearing and find that the permeability of infilled rock joints increases with both the thickness ratio and JRC.


2022 ◽  
Vol 50 (3) ◽  
pp. 20210282
Author(s):  
Xiaobo Zhang ◽  
Xi Zhu ◽  
Chi Yao ◽  
Shu Ouyang ◽  
Jianhua Yang ◽  
...  

Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


2021 ◽  
pp. 108128652110258
Author(s):  
Yi-Ying Feng ◽  
Xiao-Jun Yang ◽  
Jian-Gen Liu ◽  
Zhan-Qing Chen

The general fractional operator shows its great predominance in the construction of constitutive model owing to its agility in choosing the embedded parameters. A generalized fractional viscoelastic–plastic constitutive model with the sense of the k-Hilfer–Prabhakar ( k-H-P) fractional operator, which has the character recovering the known classical models from the proposed model, is established in this article. In order to describe the damage in the creep process, a time-varying elastic element [Formula: see text] is used in the proposed model with better representation of accelerated creep stage. According to the theory of the kinematics of deformation and the Laplace transform, the creep constitutive equation and the strain of the modified model are established and obtained. The validity and rationality of the proposed model are identified by fitting with the experimental data. Finally, the influences of the fractional derivative order [Formula: see text] and parameter k on the creep process are investigated through the sensitivity analyses with two- and three-dimensional plots.


2022 ◽  
Vol 320 ◽  
pp. 126223
Author(s):  
Jianyong Han ◽  
Dong Liu ◽  
Yongping Guan ◽  
Yang Chen ◽  
Tianliang Li ◽  
...  

2019 ◽  
Vol 79 (4) ◽  
pp. 2037-2057
Author(s):  
Leibo Song ◽  
Quan Jiang ◽  
Li-fu Li ◽  
Chang Liu ◽  
Xiao-pei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document