poisson’s ratio
Recently Published Documents


TOTAL DOCUMENTS

2410
(FIVE YEARS 619)

H-INDEX

89
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Matheus Brendon Francisco ◽  
João Luiz Junho Pereira ◽  
Lucas Antonio de Oliveira ◽  
Sebastião Da Cunha ◽  
Guilherme Ferreira Gomes

Abstract The optimization of five different responses of an auxetic model was considered: mass; critical buckling load under compression effort; natural frequency; Poisson’s ratio; and failure load. The Response Surface Methodology was applied, and a new meta-heuristic of optimization called the Multi-Objective Lichtenberg Algorithm was used to find the optimized configuration of the model. It was possible to increase the failure load by 26,75% in compression performance optimization. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, the failure load by 28.70% and reduce the mass and Poisson’s ratio by 15.97% and 11%, respectively. This paper shows something unprecedented in the literature to date when evaluating in a multi-objective optimization problem, the compression and modal performance of an auxetic reentrant model.


Author(s):  
Guan Zhou ◽  
Pengfei Yan ◽  
Qi Wang ◽  
Shijuan Dai ◽  
Xiang Li ◽  
...  

Crashworthiness and anti-vibration performance play critical roles in the performance of passenger cars. Aiming at enhancing the crash resistance and vibration resistance of vehicles thus providing good protection for passengers and drivers, a novel crash box with three-dimensional double arrow type negative Poisson’s ratio structure with functional gradient filling inner core (FGNPR crash box) is introduced in this paper and its performance is studied in detail through the comparison with the conventional crash box and the crash box filled with the uniform gradient negative Poisson’s ratio structure (NPR crash box) in crashworthiness and vibration resistance. Furthermore, range analysis is used to screen out the design variables that have little influence on the evaluation indexes and eliminate them. Based on these, neighborhood cultivation genetic algorithm (NCGA) and non-dominated sorting genetic algorithm-ii (NSGA-II) are selected as the optimization algorithms to carry out optimization design respectively and a comparison is made between the two suboptimal results screened out based on the normal boundary intersection (NBI) method to determine the overall optimal solution. Results show that the optimized FGNPR crash box has better crashworthiness and vibration resistance over the other crash boxes and its performance is further verified based on the peak acceleration of B-pillar in full vehicle crash condition. This paper provides some theoretical reference support for the development and exploration of automobile crash box systems.


Author(s):  
Ramin Hamzehei ◽  
Ali Zolfagharian ◽  
Soheil Dariushi ◽  
Mahdi Bodaghi

Abstract This study aims at introducing a number of two-dimensional (2D) re-entrant based zero Poisson’s ratio (ZPR) graded metamaterials for energy absorption applications. The metamaterials’ designs are inspired by the 2D image of a DNA molecule. This inspiration indicates how a re-entrant unit cell must be patterned along with the two orthogonal directions to obtain a ZPR behavior. Also, how much metamaterials’ energy absorption capacity can be enhanced by taking slots and horizontal beams into account with the inspiration of the DNA molecule’s base pairs. The ZPR metamaterials comprise multi-stiffness unit cells, so-called soft and stiff re-entrant unit cells. The variability in unit cells’ stiffness is caused by the specific design of the unit cells. A finite element analysis (FEA) is employed to simulate the deformation patterns of the ZPRs. Following that, meta-structures are fabricated with 3D printing of TPU as hyperelastic materials to validate the FEA results. A good correlation is observed between FEA and experimental results. The experimental and numerical results show that due to the presence of multi-stiffness re-entrant unit cells, the deformation mechanisms and the unit cells’ densifications are adjustable under quasi-static compression. Also, the structure designed based on the DNA molecule’s base pairs, so-called structure F''', exhibits the highest energy absorption capacity. Apart from the diversity in metamaterial unit cells’ designs, the effect of multi-thickness cell walls is also evaluated. The results show that the diversity in cell wall thicknesses leads to boosting the energy absorption capacity. In this regard, the energy absorption capacity of structure ‘E’ enhances by up to 33% than that of its counterpart with constant cell wall thicknesses. Finally, a comparison in terms of energy absorption capacity and stability between the newly designed ZPRs, traditional ZPRs, and auxetic metamaterial is performed, approving the superiority of the newly designed ZPR metamaterials over both traditional ZPRs and auxetic metamaterials.


Sign in / Sign up

Export Citation Format

Share Document