Study on Damage and Repair Mechanical Characteristics of Rock Salt Under Uniaxial Compression

2018 ◽  
Vol 52 (3) ◽  
pp. 659-671 ◽  
Author(s):  
Hongwu Yin ◽  
Chunhe Yang ◽  
Hongling Ma ◽  
Xilin Shi ◽  
Xiangsheng Chen ◽  
...  
2012 ◽  
Vol 170-173 ◽  
pp. 772-776
Author(s):  
Kang Duan ◽  
Qiang Yong Zhang ◽  
Bing Cai ◽  
Xiao Bin Xu

Uniaxial compression creep tests have been performed on a kind of rock salt similar material and laminated salt rock similar material on the base of salt rock gas-storage in Jintan. The creep tests show that the rheological property of the similar material is basically the same with the original rock. Under the uniaxial compression, the deformation gradually approaches to be constant after the early short stage of creep attenuation. The similar material shows stress-dependent behavior obviously under different stress stage, the greater the load the higher the creep ratio and creep deformation. A creep constitutive equation which is suitable to rock salt is used to the similar material, and it fits with the obtained creep data very well. The results show that the similar material developed in this passage has the same creep property as the original salt rock,and this material can be used to simulated the deformation and failure of underground gas storage constructed in bedded salt deposits.


2020 ◽  
Vol 66 (3) ◽  
pp. 293-320
Author(s):  
S. M. Kovalev ◽  
V. A. Borodkin ◽  
N. V. Kolabutin ◽  
A. A. Nubom ◽  
Ev. V. Shimanchuk ◽  
...  

On the “Transarktika-2019” expedition, works were carried out for determining the physical and mechanical characteristics of frost field of the first-year sea ice and the field of second-year ice. The thickness of the ice cover was determined by contact and non-contact methods, the temperature, salinity and density of ice, the strength of the samples at central bending and uniaxial compression, as well as the local (borehole) strength of ice were measured. Studies have shown that most of the field is an ice formation formed in the process of dynamic metamorphism. At the beginning of the expedition, an ice floe passed through a section of warm surface waters. This led to the disappearance of the openwork layer on the lower boundary of the ice and stopping the growth of ice from below. During the observation period, the average temperature and salinity of the deformed ice increased, while the average density decreased. The values of mechanical characteristics decreased with increasing temperature and brine volume. The average borehole strength were close to the values obtained by the quadratic approximation for ice in the area of the Ice Station “Cape of Baranov”. The physical and mechanical properties of the level ice are generally similar to the properties of ice, composed mainly of fibrous structures. The ratios between the borehole strength and the strength under uniaxial compression of ice samples drilled parallel to the ice surface were 4.5 and 4.7, which corresponds to the literature data. The thickness of the second-year sea ice at the place of work was 166 — 169 cm, the snow height was 27 cm, the raft of the ice surface above the water surface was 15 cm. The average ice temperature was –4.0 °C. Second-year ice can be divided into three parts that differ in their physical properties. The upper part (0 — 10 cm) was formed in the autumn. The second part (10 — 85 cm) is ice that has undergone seasonal thermometamorphic changes. The lower part was formed during the natural growth of ice from below at the current season.


2017 ◽  
Vol 173 ◽  
pp. 639-646 ◽  
Author(s):  
Aditya Singh ◽  
Chandan Kumar ◽  
L. Gopi Kannan ◽  
K. Seshagiri Rao ◽  
R. Ayothiraman

Author(s):  
Aditya Singh ◽  
Chandan Kumar ◽  
L. Gopi Kannan ◽  
K. Seshagiri Rao ◽  
Ramanathan Ayothiraman

Sign in / Sign up

Export Citation Format

Share Document