Arctic and Antarctic Research
Latest Publications


TOTAL DOCUMENTS

135
(FIVE YEARS 84)

H-INDEX

3
(FIVE YEARS 2)

Published By Fsbi Arctic And Antarctic Research Institute (Fsbi Aari)

2618-6713, 0555-2648

2021 ◽  
Vol 67 (4) ◽  
pp. 328-347
Author(s):  
K. V. Artamonova ◽  
I. A. Gangnus ◽  
L. A. Dukhova ◽  
V. V. Maslennikov ◽  
N. A. Lavinen

Some hydrochemical characteristics and, first of all, the main nutrients (phosphorus, nitrogen, silicon) can be used as markers for distinguishing different types of water masses and positions of the main fronts of the Southern Ocean. The seasonal and interannual variability of these characteristics also reflects the character of biological processes in the surface layer of the ocean, which is important for assessing biological productivity. The aim of this study was to analyze the main features of the spatial distribution of hydrochemical characteristics in the surface layer in the Atlantic and Indian Ocean sectors of the Southern Ocean between the Subantarctic Front and the shores of Antarctica and assess their seasonal (spring–autumn) and interannual variability for the observation period from 2008 to 2020. We describe the surface nutrient concentrations between Africa and Antarctica along the transects that cross the Subantarctic Front (SAF) in the north, the Polar Frontal Zone (PFS), Polar Front (PF) and Antarctic Zone water in the south. The findings revealed an increase in dissolved oxygen and nutrients towards the south. Nitrates changed values within the SAF from 15 μM to 24 μM, whereas values from 1.2 μM to 1.7 μM were observed for phosphates. Silicate increased considerably within the Polar Front, from 6.6 μM to 20.8 μM. An analysis was carried out of the seasonal and interannual variability of the hydrochemical conditions in the surface layer of the Southern Ocean. The interannual variability of the nutrients was determined by the spatial variability of the main fronts of the Antarctic Circumpolar Current (ACC) and the intensity of the largescale Weddell Gyre (WG). Since 2017, there has been an increase in the meridional transfer of waters: in the Antarctic Summer 2017–2018, there was a spreading of high-nutrient WG waters toward the north, and in the Summer 2019–2020, the low-nutrient waters anomaly was transferred far to the south (up to 60°S).According to the data obtained, the seasonal dynamics of the nutrients in the surface layer of the Southern Ocean was rather weakly expressed. An exception is the high-latitude waters of the Cooperation and Davis Seas, where maximum seasonal variability of the hydrochemical characteristics was observed. The highest rate of nutrient consumption was observed in the coastal area of the Cooperation Sea near the fast ice edge from mid–December to early January and reached 3.2 μM per day for silicate, 1.8 μM per day for nitrates, and 0.12 μM per day for mineral phosphorus. The results of the long-term monitoring of the hydrochemical conditions in the Cooperation Sea made it possible to distinguish conditionally “warm” years with early vegetation (at the end of December) and intensive consumption of nutrients by phytoplankton, and “cold” years, when the formation of high-latitude “oases” in December–January was not observed.


2021 ◽  
Vol 67 (4) ◽  
pp. 394-405
Author(s):  
V. S. Porubaev ◽  
L. N. Dyment

The need for classifying surface atmospheric pressure fields over the Arctic seas arose as a method was being developed for predicting the characteristics of discontinuities (leads) in the sea ice cover. Wind, which is determined by the atmospheric pressure field, acts on the ice cover and causes it to drift. Leads are formed in the ice cover due to the irregularity of ice drift. Ice drift can be caused by several factors, such as skewed sea level, tidal waves and currents. However, the main cause of ice drift in the Arctic seas is wind. Each typical field of surface atmospheric pressure corresponds to a certain field of leads in the ice cover. This makes it possible to predict the characteristics of leads in the ice cover by selecting fields similar to predictive fields of atmospheric pressure based on archived data.The variety of atmospheric pressure fields makes it difficult to find an analogue to a given field by simply going through all the corresponding data available in the electronic archive. Classification of atmospheric pressure fields makes it possible to simplify the process of selecting an analogue.To develop the classification, we used daily surface pressure maps at 00 hours GMT for the cold seasons (from mid- October to the end of May) 2016–2021. The atmospheric pressure fields, which were similar in configuration, and hence the wind fields, belonged to the same type. In total, 27 types were identified, applicable both to the Laptev Sea and the East Siberian Sea. Within one type, a division into subtypes was made, depending on the speed of the geostrophic wind.The wind intensity was estimated by the number of isobars multiples of 5 mb on the surface atmospheric pressure map. All the surface pressure fields observed over the waters of the Laptev and East Siberian Seas over the past 5 years have been assigned to one of the types identified using cluster analysis. Each type of atmospheric pressure within the framework of the forecasting method being developed is supposed to correspond to a field of discontinuities in the ice cover.


2021 ◽  
Vol 67 (4) ◽  
pp. 318-327
Author(s):  
F. K. Tuzov

The article discusses the possible relationship between changes in the ice cover area of the shelf seas of the Arctic Ocean and the intensity of dense water cascading, based on calculation data obtained with the NEMO model for the period 1986–2010, with the findings issued at 5-day intervals and a spatial resolution of 1/10°. The cascading cases were calculated using an innovative method developed by the author. The work is based on the assumption that as the ice cover in the seas retreats, the formation of cooled dense water masses is intensified, which submerge and flow down the slope from the shelf to great depths. Thus, in the Arctic shelf seas, the mechanism of water densification due to cooling is added to the mechanism of water densification during ice formation, or, replaces it for certain regions. It was found that in the Barents Sea, the Laptev Sea and the Beaufort Sea, a decrease in the ice cover area causes an increase in the number of cases of cascading. However, in most of the Arctic seas, as the area of ice cover decreases, the number of cases of cascading also decreases. As a consequence, for the whole Arctic shelf area, the number of cases of cascading also decreases with decreasing ice cover. It is shown that in the Beaufort Sea the maximum number of cascading cases was observed in the winter period of 2007–2008, which was preceded by the summer minimum of the ice cover area in the Arctic Ocean. In the Barents Sea after 2000, a situation has been observed where the ice area has been decreasing to zero values, whereas the number of cascading cases has for some time (1 month approximately) remained close to high winter values. This possibly means that the cooling and densification of the waters in ice-free areas occurs due to thermal convection. Based on the calculation of the number of cases of cascading, it can be argued that the intensification of cascading due to a reduction in the ice cover is a feature of individual seas of the Arctic Ocean, those in which there is no excessive freshening of the upper water layer due to ice melting.


2021 ◽  
Vol 67 (4) ◽  
pp. 406-424
Author(s):  
K. E. Sazonov

The paper gives a review of the studies concerned with operation of vessels in brash ice. Recently, the ice conditions have received an ever increasing attention of the researchers related to the fact that shipping in the Arctic regions and freezing seas, as well as in inland waterways has been scaled up. One of the important fields of brash ice studies is specifics of sailing under these conditions and primarily determination of the ship ice resistance. The paper shows that theoretical methods combined with physical modeling in ice basins are used for determination of the ship ice resistance under brash ice conditions. The paper traces the evolution of theoretical models utilized for calculations. It is mentioned that the models are mainly based on loose material mechanics. A rapidly developing computer modeling of ship motion in brash ice based on discrete element method is considered. Physical modeling techniques used for modeling brash ice in ice basin are described, and challenges of experimental investigations are discussed. It is pointed out that experimental studies in ice basin can provide valuable data not only about ship ice resistance but also about the mechanisms giving rise to ice channels filled with brash ice. The paper describes the methods for studying operation of ship propellers in brash ice conditions. It is concluded that further research into brash ice is needed.


2021 ◽  
Vol 67 (4) ◽  
pp. 348-367
Author(s):  
V. Ya. Lipenkov ◽  
A. V. Turkeev ◽  
N. I. Vasilev ◽  
A. A. Ekaykin ◽  
E. V. Poliakova

It is generally assumed that the gas composition and the total gas content of Lake Vostok’s water are, to a large extent, governed by the budget of atmospheric gases entering the lake together with glacier ice melt, mostly in its northern part. Since the ice accretion that prevails in the south of the lake leads to the exclusion of gases during the freezing process, these gases can build up in the lake water. Earlier theoretical works [2, 3] have demonstrated that about 30 water residence times are required to attain equilibrium between gases in solution and those in a hydrate phase, which sets the upper bounds of concentrations of nitrogen and oxygen dissolved in sub-ice water (~2.7 g N2 L–1 and ~0.8 g O2 L–1). Here we attempt to estimate the real gas content of the lake water based on the link between the pressure melting temperature of ice and the concentration of gases dissolved in the liquid phase [2]. We use the stacked borehole temperature profile extended to 3753 m depth and the measurements of temperature of sub-ice water that entered the borehole after the second unsealing of Lake Vostok to estimate the melting temperature of ice (–2.72 ± 0.1 °C) at the ice sheet-lake interface (depth 3758.6 ± 3 m, pressure 33.78 ± 0.05 MPa). The gas content of the near-surface layer of lake that corresponds to this melting temperature is calculated to be 2.23 g.L–1, meaning that the concentration of dissolved oxygen must be as high as 0.53 g.L–1, i. e. one-two orders of magnitude higher than in any other known water bodies on our planet. The inferred gas content of sub-ice water is, by a factor of 1.6, lower than the maximal solubility of air in water in equilibrium with air hydrate, though it is still higher, by a factor of 19, than the total air content of melting glacier ice. The relatively low concentration of dissolved air in the near-surface layer of the lake revealed in this study provides a new experimental constraint for understanding the gas distribution in Lake Vostok as affected by the circulation and mixing of water beneath the ice sheet.


2021 ◽  
Vol 67 (4) ◽  
pp. 368-381
Author(s):  
N. A. Tebenkova ◽  
A. A. Ekaykin ◽  
T. Laepple ◽  
D. Notz ◽  
A. V., Kozachek ◽  
...  

Water isotopes are key proxies to reconstruct past climatic conditions on our planet based on Antarctic ice core data. The accuracy of climate reconstructions depends on understanding the whole range of the processes involved in the formation of precipitation isotopic composition. The isotopic composition of precipitation in Central Antarctica has been studied in a number of works, but the difference between the isotopic composition of different types of precipitation has not yet been fully described.There are three main type of precipitation in Central Antarctica: snow, ice needles and hoar. The aim of this work is to establish the dependence of isotopic composition of different precipitation types on temperature. Precipitation samples were collected at Vostok station in Central Antarctica from 1998 to 2020 and further analyzed for δ18O and δD. For each precipitation event we have meteorological data, averaged over the time of precipitation fallout. Mean values of δD for each precipitation type were defined as follows: –444±6.5 ‰ for diamond dust, –480± 6 ‰ for hoar and –95±11 ‰ for snow. The seasonal variability of the temperature dependence of the isotopic composition was studied using the example of ice needles. According to our data, the dependence is insignificant in winter, but this needs to be confirmed by an extended dataset. The largest slope of the isotope-temperature dependence regression line is observed for the summer period and is equal to 5.34±3.11 ‰·°С–1, the autumn season has a slope of 2.1±1.3 ‰·°С–1, while for the spring period we do not have enough data for analysis. There is an insignificant difference in the slopes of the isotope-temperature dependence for different types of precipitation: 2.93±0.51 ‰·°С–1 for ice needles, 2.32±1.34 ‰·°С–1 for snow and 2.52±0.35 ‰·°С–1 for hoar. We studied the effect of blizzards on the isotopic composition of samples and concluded that one should avoid using data collected during a blizzard to study the differences in the formation of the isotopic signal for different types of precipitation.This work brings us closer to understanding how isotopic composition is formed in each type of precipitation and what information it provides. This will contribute to a more accurate interpretation of the isotope signal from ice cores.


2021 ◽  
Vol 67 (4) ◽  
pp. 382-393
Author(s):  
L. G. Leitchenkov ◽  
V. V. Minina ◽  
Yu. B. Guseva

The sedimentary basins of the north-western Weddell Sea are characterized by a variety of contourite drifts. This study is aimed at their identification, spatial mapping and temporal evolution and based on the integration of a large amount of seismic data collected by different countries including the recent data of the Russian Antarctic Expedition. Most of the drifts in the region being studied are classified as separated, confined, plastered or sheeted. The chain of sediment wave fields is mapped in the western and northern Powell Basin. The earliest contourite drifts started to form in the Early Miocene or, possibly, in the Late Oligocene. The changes in the depositional pattern in the Middle Miocene and then in the Late Pliocene are thought to have resulted from successive intensification of the bottom currents.


2021 ◽  
Vol 67 (3) ◽  
pp. 230-235
Author(s):  
I. V. Polyakov

Changes of high-latitude freshwater content (FWC) play an important role in shaping the variability of polar oceans. FWC is defined as depth-integrated departure of salinity from a reference salinity Sref divided by this Sref . A constant Sref is often used for high-latitude FWC estimates. Here it is argued that for analyzing FWC spatiotemporal changes the use of local mean Sref is a better choice. Analysis of 2007 FWC anomalies in the 25–75 m layer demonstrated, for example, that the choice of Sref = 34.8 (which is often used in climate studies) leads to FWC spatial anomalies exaggerated, on average, by ~0.6 m, which is a substantial fraction of total spatial FWC changes. The problem is aggravated in areas where the difference between the local Sref and Sref = 34.8 is greater. Thus, it is concluded that using climatological mean salinities as Sref provides superior estimates of spatiotemporal Arctic Ocean FWC changes.


2021 ◽  
Vol 67 (3) ◽  
pp. 261-279
Author(s):  
Yu. A. Zavgorodnyaya ◽  
O. B. Popovicheva ◽  
V. O. Kobelev ◽  
D. P. Starodymova ◽  
V. P. Shevchenko ◽  
...  

A study of the content and composition of polycyclic aromatic hydrocarbons (PAHs) in the solid fraction of the snowpack is carried out on the territory of the Yamal-Nenetz Autonomous region, the north of Western Siberia. The total content of ten three-six nucleus PAHs was determined in the 51 samples collected at various distances from oil and gas producers and roads, near settlements, and in remote Arctic areas. The total PAH content varies from the lowest 0.3 ng/mg on the Bely Island, increasing to ~ 5 ng/mg in areas of new gas fields, and up to high 15 ng/mg in cities. Characteristic features of PAHs composition under the influence of gas flares emissions in central areas of high technogenic load are identified; they are a total content of up to 144 ng/mg and enrichment with low- molecular weight PAHs. In remote Arctic regions, high-molecular weight 5–6 nucleus PAHs dominate. Profiles of individual PAHs near gas flares, roads and residential sector facilities have been determined. The percentage contribution of the sum of 3, 4 and 5, 6-nucleus PAHs to the total PAH content indicates the gas flaring impact. Ratios of fluorantene to pyrene and benzene(b)fluorantene to benzene(ghi)perylene indicate changes in the snow PAHs composition with a decrease in the gas flaring contribution. The data obtained for the assessment of gas flaring emission impact on the PAHs composition in the snowpack are relevant to polar areas where new fields are being developed.


2021 ◽  
Vol 67 (3) ◽  
pp. 280-292
Author(s):  
G. V. Surkova ◽  
V. A. Romanenko

The paper investigates the current regime of turbulent heat exchange with the atmosphere over the Barents and Kara Seas, as well as its spatial, seasonal and temporal variability (1979–2018). It is shown that over the past decades, the areas of the location of the centers of maximum energy exchange between the sea surface and the atmosphere have not changed significantly in comparison with the middle and second half of the XX century. It was revealed that the greatest seasonal and synoptic variability of heat fluxes is typical of the central and western parts of the Barents Sea. It was found that both indicators of variability in the cold season are 2–5 and more times higher than in the warm season, and the spatial heterogeneity of the indicators of variability in winter is about twice as large as in summer. Quantitative estimates have shown that, within the Barents Sea, the spatial variability of fluxes in winter may be 5–10 times or more higher than the summer values. Above the Kara Sea, the greatest heterogeneity in the fluxes field is typical of the autumn and early winter seasons. It has been found that the annual sums of heat fluxes from the surface of the Barents Sea exceed the values for the Kara Sea, on average, 3–4 and 5–6 times, for sensible and latent heat fluxes, respectively, and in some years may differ tens of times. For the period under study, a single trend of the integral fluxes over the water area and their annual magnitude is not expressed, although there are multi-year decadal fluctuations. It is shown that, despite the significant difference in the thermal regime of the Barents and Kara seas and the lower atmosphere above them, the interannual changes in the total turbulent flows are quite well synchronized, which indicates the commonality of large-scale hydrometeorological processes in these seas, which affect the energy exchange between the seas and the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document