Statistical bias correction method applied on CMIP5 datasets over the Indian region during the summer monsoon season for climate change applications

2016 ◽  
Vol 131 (1-2) ◽  
pp. 471-488 ◽  
Author(s):  
V. Prasanna
Author(s):  
CHOTHANDA NYUNT ◽  
TOSHIO KOIKE ◽  
AKIO YAMAMOTO ◽  
TOSHIHORO NEMOTO ◽  
MASARU KITSUREGAWA

2015 ◽  
Vol 31 (3) ◽  
pp. 241-252 ◽  
Author(s):  
Donghyuk Kum ◽  
Younsik Park ◽  
Young Hun Jung ◽  
Min Hwan Shin ◽  
Jichul Ryu ◽  
...  

2015 ◽  
Vol 19 (10) ◽  
pp. 4055-4066 ◽  
Author(s):  
A. Gobiet ◽  
M. Suklitsch ◽  
G. Heinrich

Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the temperature change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model data set by up to 15 %. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM also has the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized if the model error characteristics are sufficiently time-invariant.


2010 ◽  
Vol 7 (5) ◽  
pp. 7863-7898 ◽  
Author(s):  
J. O. Haerter ◽  
S. Hagemann ◽  
C. Moseley ◽  
C. Piani

Abstract. It is well known that output from climate models cannot be used to force hydrological simulations without some form of preprocessing to remove the existing biases. In principle, statistical bias correction methodologies act on model output so the statistical properties of the corrected data match those of the observations. However the improvements to the statistical properties of the data are limited to the specific time scale of the fluctuations that are considered. For example, a statistical bias correction methodology for mean daily values might be detrimental to monthly statistics. Also, in applying bias corrections derived from present day to scenario simulations, an assumption is made of persistence of the bias over the largest timescales. We examine the effects of mixing fluctuations on different time scales and suggest an improved statistical methodology, referred to here as a cascade bias correction method, that eliminates, or greatly reduces, the negative effects.


Sign in / Sign up

Export Citation Format

Share Document